
BLITZ BASIC 2.1

Manual edited and improved by
Ivan ‘Zeb’ Elwood & Chris Forrester

Version 0.17 on 21st January, 2020

Original OCR scan by Mikael Mick Norrgård

Please report any errors to zebby@gmx.com

Page 1

1. GETTING STARTED
Directory Tree..8
Using Ted the Blitz2 Editor...9
Entering Text..9
Highlighting Blocks of Text...10
The Editor Menus..11
The Blitz File Requester..14
The Compiler Menu...14
Compiler Options..16
Keyboard Shortcuts...17

2. BLITZ BASICS
My First Program...18
The Print Command..18
Formatted Printing..18
A Simple Variable..19
Blitz2 Operators..19
Boolean Operators..20
Binary Operators...21
Multiple Commands..21
A Simple Loop..21
Nested Loops...22
While...Wend and Repeat...Until..22
Endless Loops..23
Using String Variables...23
Program Flow..23
Jumpin’ Around...24
Getting Input from the User...25
Arrays...25

3. TYPES, ARRAYS AND LISTS
Numeric Types...27
Default Types...27
The Data Statement..28
Numeric Overflows..28
String Types...29
System Constants...29
Primitive Types Summary...29
NewTypes...30
Arrays Inside NewTypes...31
The UsePath Directive..32

Page 2

ARRAYS..33

LISTS
Dimming Lists..34
Adding Items to a list..34
Processing Lists...35
Removing Items From a List..36
List Structure...36
The Pointer Type...36

4. PROCEDURES
Introduction...38
Statements..38
Functions..39
Recursion...40
Accessing Global Variables..40
Procedures Summary...41
Assembler in Blitz Procedures...41

5. ERROR CHECKING & DEBUGGING
Compile Time Errors...42
The CERR Directive...42
Runtime Errors..43
The Blitz Debugger..43
The Debugger Gadgets...44
Tracing Program Execution..45
Resuming Normal Execution..46
Viewing Command History...46
Direct Mode..46
Debugger Errors..47

6. BLITZ OBJECTS
Blitz2 Objects Overview..48
Object Similarities...48
Object Maximums...49
Using an Object...49
Input/Output Objects..49
Object Structures..50
The Blitz Primary Objects...50
Screens..50
Windows...51
Gadget and Menu Lists...51

Page 3

Palettes..51
BitMaps..51
Shapes..52
Sprites..52
Slices..52
Files..52
Objects Summary..53

7. BLITZ MODE
Slice Magic...54
Smooth Scrolling...54
Dual-Playfield..55
Copper Control..56
The Blitter..56
QAmiga Mode..56
Summary..57

8. ADVANCED TOPICS
Resident Files..58
Operating System Calls...58
Calling OS Libraries...59
Accessing OS Structures...60
Locating Variables & Labels...60
Constants...61
Conditional Compiling...62
Macros..63
Macro Parameters...63
The '0 Parameter...64
Recursive Macros..65
Replacing Functions with Macros..65
The CMake Character..66
Inline Assembler...66
GetReg & PutReg...66
Assembler in Procedures...68

9. PROGRAMMING TECHNIQUE & OPTIMISING
Label and Variable Names..69
Style..69
Naming Related Problems..69
Remarks and Comments..70
Structured Programming Techniques...70
Keeping Things Modular...70

Page 4

Keeping Your Code Readable...71
Optimising Code..72
Algorithms..72
Loops..72
Look-Up Tables..73
Using Pointers..73
Testing Performance...73
Optimising Games...74

10. PROGRAM EXAMPLES
Number Guessing..75
Creating Stand-Alone Workbench Programs..76
A Graphic Example..76
Using Menus & File Requesters...77
String Gadgets...78
Prop Gadgets...79
Database Type Aplication...80
The Phone Book Program...81
List Processor for Exec Based Lists...82
Exec List Processor...83
Prime Number Generator...83
Clipped Blits...84
Dual Playfield Slice..85
Double Buffering...86
Smooth Scrolling...88

11. THE DISPLAY LIBRARY & AGA
Introduction...89
Initialising..89
Flags used with InitCopList..90
Colours...90
Smooth Scrolling...90
Dual Playfield...91
Sprites..91
Fetch Mode..91
Multiple Displays...92
Advanced Copper Control...92
Display Example 1...92
Display Example 2...93

Page 5

COMMAND REFERENCE SECTION
R-1: Program Flow..95
R-2: Variable Handling...102
R-3: Input/Output...106
R-4: File Handling & IFF Info...111
R-5: Numeric & String Functions...115
R-6: Compiler Directives & Object Handling..124
R-7: Assembler Directives..128
R-8: Memory Control..130
R-9: Program Startup...132
R-10: Slices...134
R-11: Display Library..139
R-12: Blitz Mode I/O...144
R-13: Bitmaps...148
R-14: 2D Drawing...151
R-15: Animation Support...154
R-16: Shape Handling..155
R-17: Blitting...159
R-18: Sprite Handling...166
R-19: Collision Detection...169
R-20: Palettes...172
R-21: Sound, Music & Speech...177
R-22: Screens..183
R-23: Windows..186
R-24: Gadgets...199
R-25: Menus..206
R-26: GadTools...209
R-27: ASL Library..214
R-28: Arexx..216
R-29: Brexx..226
R-30: Serial Port..229

APPENDIX

A-1: COMPILE TIME ERRORS
General Syntax Errors...231
Procedure Related Errors...231
Constant Related Errors...232
Expression Evaluation Errors...233
Illegal Errors..233
Library Based Errors...234
Include Errors..234

Page 6

Program Flow Based Errors...235
Type Based Errors...235
Condition Compiling Errors..237
Resident Based Errors..237
Macro Based Errors..237
Array Errors..238
Interrupt Based Errors..238
Direct Mode...240
Select...End Select Errors...240
Blitz Mode..241
Strange Beast Errors...241

A-2: OPERATING SYSTEM CALLS
Exec..242
DOS..245
Graphics...248
Intuition...251
DiskFont...254

A-3: RAWKEY CODES..255

A-4: COMMAND INDEX...256

FINAL WORDS...262

Page 7

1. GETTING STARTED

Directory Tree for Hard Disk Users
Blitz program files
 |
 +--Blitzlibs resident files
 +--amigalibs amiga libraries
 +--otherlibs third party libraries
 |
 +-Developers/ documentation
 | +--acidlibsrc acid library source code
 | +--amigaincludes system includes
 | +--toolsource developer toolsource code
 | +--userlibdocs docs for third party libs
 | +--userlibprogs test programs for third party libs
 | +--Userlibsource source code for third party libs
 |
 +-Examples/ example code
 | +--amigamode
 | +--andrewsdemos
 | +--blitzmode
 | +--marksdemos
 | +--simonsdemos
 | +--tedsdemos
 | +--tools
 |
 +-Userlibs/

Page 8

Using Ted the Blitz2 Editor
To enter and compile your programs you need an editor. Blitz2 comes with a text editor
that acts both as an interface to the Blitz2 compiler as well as a stand-alone ASCII editor
(ASCII is the computer standard for normal text).

The horizontal and vertical bars are called 'scroll bars'. When the file you are editing is
longer or wider than the screen you can position your view of the file by dragging these
bars inside their boxes with the left mouse button.

At the bottom of the screen is information about the cursor position relative to the start of
the file you are editing as well as a memory monitor that lets you know the largest block of
memory available in your Amiga system.

Using the left mouse button you can drag the Blitz2 screen up and down just like any other
Amiga screen as well as place it to the back with the front to back gadgets at the top right
of the screen.

Entering Text
The editor can be treated just like a standard typewriter; just go ahead and type, using the
return key to start a new line.

The small box that moves across the screen as you type is called the cursor. Where the
cursor is positioned on the screen is where the characters will appear as you type. By using
the arrow keys you can move the cursor around your document, herein to be known as the
file.

If you place the cursor in the middle of text you have already typed you can insert
characters just by typing. The editor will move all the characters under and to the right of
the cursor along one and insert the key you pressed into the space created.

The DEL key will remove the character directly under the cursor and move the remaining
text on the line left one character to fill the gap.

Page 9

The key to the left of the DEL key will also remove a character but unlike the DEL key it
removes the character to the left of the cursor moving the cursor and the rest of the line to
the left.

The TAB key works similar to a typewriter, moving the cursor and any text to the right of the
cursor to the next tab stop.

The RETURN key, as mentioned, allows you to start a new line. If you are in the middle of a
line of text and want to move all text to the right of the cursor down to a new line use shift
RETURN, this is known as inserting a carriage return.

To join two lines of text use the Amiga J keyboard combination.

Using the shift keys in combination with the arrow keys you can move the cursor to the very
start or end of a line and up and down a whole page of the document.

By pointing with the mouse to a position on the screen you can move the cursor there by
clicking the left mouse button.

See keyboard shortcuts at the end of this chapter for other keys used with the Blitz2.

Highlighting Blocks of Text
When editing text, especially programs, you often need to operate on a block of text.
Position the mouse at the start or end of the block, hold down the left mouse button and
drag the mouse to highlight the area you wish to copy, delete, save or indent. While holding
down the button you can scroll the display by moving the pointer to the very top or bottom
of the display.

Page 10

You can also select a block with the keyboard, position the cursor at the start of the block
of text, hit the F1 key then position the cursor at the end of the text and hit F2. A special
feature for structured programmers is the Amiga-A key combination, this automatically
highlights the current line and lines any above or below that are indented the same number
of spaces.

The Editor Menus
Using the right mouse button you can access the menu system of the Blitz2 editor.
Following is a list of features accessible from these menus in order from left to right.

The PROJECT Menu
NEW
Kills the file you’re editing from the Amiga’s memory. If the file has been changed since it
was last saved to disk a requester will ask you if you really wish to NEW the file.
LOAD
Reads a file from disk. A file requester appears when you select LOAD which enables you to
easily select the file you wish to edit. See later in this chapter for a full description of using
the file requester.
SAVE
Writes your file to disk. A file requester appears when you select SAVE which enables you
to easily select the file name you wish to save your file as. See later in this chapter for a full
description of using the file requester.
DEFAULTS
Changes the look of the Blitz2 editor. You can edit the palette, select the size of font and
tell the system if you wish icons to be created when your files are saved. The scroll margins
dictate how far from the edge of the screen your cursor needs to be before Blitz scrolls the
text for you.
ABOUT
Displays the version number and credits concerning Blitz2.
PRINT
Sends your file to an output device, usually PRT:, the printer device.
CLI
Launches a command line interface from the editor. Use the ENDCLI command to close
this CLI window and return to the Blitz2 editor.
CLOSE WB
Closes Workbench if it is currently open. This option should only be used if you are running
very short on memory as closing Workbench can free about 40K of valuable chip mem.
QUIT
Close the Blitz2 editor and returns you to Workbench or CLI.

Page 11

The EDIT Menu
COPY
Copies a block of text that is highlighted with the mouse or F1/F2 key combination to the
current cursor position. The F4 key is another keyboard shortcut for COPY.
KILL
Deletes a highlighted block of text (same as shift F3 key).
BLOCK TO DISK
Saves a highlighted block of text to disk in ASCII format.
INSERT FROM DISK
Loads a file from disk and inserts it into the file you are editing at the cursor position.
FORGET
De-selects a block of text that is selected (highlighted).
INSERT LINE
Breaks the line into two lines at the current cursor position.
DELETE LINE
Deletes the line of text the cursor is currently located on.
DELETE RIGHT
Deletes all text on the line to the right of the cursor.
JOIN
Places the text on the line below the cursor at the end of the current line.
BLOCK TAB
Shifts all highlighted text to the right by one tab margin.
BLOCK UNTAB
Shifts all highlighted text to the left by one tab margin.

The SOURCE Menu
TOP
Moves the cursor to the top of the file.
BOTTOM
Moves the cursor to the last line of the file.
GOTO LINE
Moves the cursor to the line number of your choice.

Page 12

The SEARCH Menu
FIND
Will search the file for a string of characters.
NEXT
Positions the cursor at the next occurrence of the find string entered using the FIND menu
option (as below).
PREVIOUS
Will position the cursor at the last occurrence of the find string entered using the FIND
menu option (as below).
REPLACE
Will carry out the same function as discussed in the FIND requester below.

After selecting FIND in the SEARCH menu the following requester will appear:

Type the string that you wish to search for into the top string gadget and click on NEXT. This
will position the cursor at the next occurrence of the string, if there is no such string the
screen will flash.

Use the PREVIOUS icon to search backwards from the current cursor position.

The CASE SENSITIVE option will only find strings that have same letters capitalised,
default is that the search will ignore whether letters are caps or not.

To replace the find string with an alternate string click on the box next to REPLACE and type
the alternate string. REPLACE will search for the next occurrence of the find string, delete
it, and insert the replace string in its place.

REPLACE ALL will carry on through the file doing replaces on all occurrences of the find
string text.

Page 13

The Blitz File Requester
When you select load or save, Blitz2 places a file requester on the screen. With the file
requester you can quickly and easily find the file on a disk.

Clicking on the top left of the window or on the CANCEL gadget at the bottom right will
cancel the file requester returning you to the editor.

The slider at the right enables you to scroll up and down through the files in the currently
selected directory (drawer).

Double clicking on a file name (pointing to the name and pressing the left mouse button
twice) will select that file name.

Clicking on PARENT will return you to the parent directory.

Clicking on DRIVES adds a list of all drives, volumes and assigned devices to the top of the
file list so you can move into their directories.

You can also enter path and file names with the keyboard by clicking on the boxes next to
PATH: and FILE: and entering the suitable text. Then click on the OK gadget.

CD is a special command used when programming in Blitz2 to change the editors current
directory to that specified in the path name. When you select CLI or launch a task from the
editor its root directory will be that selected by the CD gadget.

Last feature of Blitz2 FileRequester is the ability to size its window, dragging bottom-right
of the window with the left mouse button you can see more files at one time.

The COMPILER Menu
The following is a discussion of the extra options and commands available with Ted when
used in Blitz2 programming mode. The Compiler menu includes all the commands needed
to control the Blitz2 compiler.
COMPILE/RUN
Compiles your Blitz2 program to memory and if there are no errors, run the program.

Page 14

RUN
Runs the program if it has already been successfully compiled to memory.
CREATE FILE
Compile your Blitz2 program to disk as an executable program.
OPTIONS
See next page for details about Blitz2 compiler options.
CREATE RESIDENT
Will create a 'resident file' from the current file. A resident is a file including all constants
and macro definitions as well as newtype definitions. By removing large chunks of these
definitions from your code and creating a resident (pre-compiled) file a dramatic increase
in compile speed can be obtained.
VIEW TYPE
Allows you to view all currently resident types. Click on the type name and its definition will
be shown. Subtypes can be viewed from this expansion also.
CLI ARGUMENT
Enables you to pass parameters to your program when executing it from the Blitz2 editor
environment just as if you had run the program from the CLI.
CALCULATOR
Allows you do to calculations in base 2, 10 and 16. Precede hex values with $ and binary
with %. It also supports multi levels of parenthesis.
RELOAD ALL LIBS
Will read all files from BLITZLIBS: back into Blitz2 compiler environment. It's useful when
writing your own Blitz2 libs and wish to test them without having to re-run Blitz2.

Page 15

Compiler Options
The following is a discussion of the Options requester found in the Compiler menu.

Create Icons for Executable Files
If on, the compiler creates an icon to accompany the file created with the CREATE FILE
option. This means the program will be accessible from the WB. Note: for the program to
execute correctly when run from WB the WBStartUp command should be included at the
top of the source code.
Enable Runtime Errors
When on will trap runtime errors and invoke the Blitz2 debugger. See Chapter 5 for a
thorough discussion of runtime errors in Blitz2.
Make Smallest Code
Selects two pass compile mode, which always calculates the minimum amount of memory
required for the object code. Make Smallest is automatically selected when creating
executable files. Unselected, programs will compile quicker.
Debug Info
Creates a symbols table during CREATE FILE so executable can be debugged more easily
with debuggers such as Metadigm's excellent MetaScope.
Buffer Sizes
Allows different buffers to be altered when using Blitz2 as a one-pass compiler. These
buffers are automatically optimised when using Make Smallest (two-pass compile). The
one exception is the string buffer setting. If using large strings (such as reading entire files
into one string) the string workspace buffer should be increased in size to handle the
largest string used.

Page 16

Object Maximums
Allows setting of maximum number of Blitz2 objects such as screens, shapes etc. See
Chapter 6 for a thorough explanation of Blitz2 objects and their maximum settings.

Resident
Adds pre-compiled resident files to the Blitz2 environment. Click in the box and type in the
resident file name.

Keyboard Shortcuts
Having to reach for the mouse to execute some of the editor commands can be a nuisance.
The following is a list of keyboard shortcuts that execute the same options that are
available in the menus.

The right Amiga key is just to the right of the space bar and should be used like the shift key
in combination with the stated keys to execute the following commands:

Amiga A Selects all text that is indented the same amount as the current line (strictly for
 structured programming housekeeping)
Amiga B BOTTOM will position cursor on last line of file
Amiga D DELETE LINE removes the line of text on the cursor position
Amiga F FIND/REPLACE executes the FIND command in the SEARCH menu
Amiga G GOTO LINE moves cursor to specific line of file
Amiga I INSERT LINE moves all text at and below the cursor down one line
Amiga J JOIN LINE adjoins next line with current line
Amiga L LOAD reads a file from disk
Amiga N NEXT searches for the next occurrence of the 'find string'
Amiga P PREVIOUS searched for previous occurrence of the 'find string'
Amiga Q QUIT will exit the Blitz2 editor
Amiga R REPLACE will replace text at cursor (if same as find string) with the alternate
 string specified with the Find command
Amiga S SAVE writes a file to disk
Amiga T TOP moves the cursor to the top of the file
Amiga W FORGET will unhighlight a selected block of text
Amiga Y DELETE TO RIGHT of cursor
Amiga Z CLI
Amiga ? DEFAULTS allows the user to change the look and feel of the Blitz2 editor
Amiga] BLOCK TAB moves whole block right one tab
Amiga [BLOCK UNTAB moves whole block left one tab

Page 17

2. BLITZ BASICS

Type in the following two lines:

Print “This is my first program written in Blitz2!”
MouseWait

Then using the right button select COMPILE & RUN from the top right menu.

If you have typed the program in correctly a Blitz2 CLI Window will appear with the
message. Click the mouse button to return to the editor. That's all there is to it!

The Print Command
Position the cursor on the Print statement and press the HELP key, the syntax for the Print
command appears at the top of the screen. It should read:

Print Expression[,Expression...]

The square brackets mean that the Print command will accept any number of expressions
separated by commas. An expression can be any number, string (text in "quotes"), variable
or BASIC calculation. The following is an example of all these.

Don't forget to include the MouseWait command when you test this, otherwise Blitz2 will
print the message and return you to the editor before you even have time to read it.

Print 3,”CARS”,a,a*7+3

The following should be printed out in the CLI window: 3CARS03

If we add some spacing between each expression like so:

Print 3,” CARS ”,a,” “,a*7+3

The result will be the line: 3 CARS 0 3

Formatted Printing
We can change the way Blitz2 prints numbers using the Format command, this is useful if
you want to print a list of numbers, in a column.

NPrint is used to move the cursor to a newline after printing the expressions.

Format “###.00”
NPrint 23.5
NPrint 10
NPrint .5
NPrint 0

MouseWait

Page 18

A Simple Variable
The main power of a programming language lies in its ability to manipulate numbers and
text. Variables are used to store these pieces of information.

The following line will store the value 5 in the variable a:

a=5

The variable a now holds the value 5. We can tell the computer to add 1 to the value of a
making it 6 using the following expression:

a=a+1

An expression can contain more than one operation, brackets can be used to make one
operation be evaluated before the others:

a=(a+3)*7

Blitz2 Operators
An evaluation is a collection of variables, constants, functions and operators. Examples of
operators are the plus and minus signs.

An operator will generate an outcome using either the variable on its right: a=NOT 5

Or from the variables on its left and right:

a=5+2

An evaluation can include multiple operators:

a=5*6+3

As in mathematics the order the operators are evaluated will affect the outcome, if the
multiply is done first in the above example the result is 33, if the addition was done first,
5*(6+3), the result will be 40.

When Blitz performs an evaluation some operators have precedence over others and will
be evaluated first, the following two evaluations will have the same result because Blitz2
will always evaluate multiplication before addition, a=5*6+3 is the same as a=3+5*6

To override the order which Blitz2 evaluates the above, parenthesis can be added,
operations enclosed in parenthesis will be evaluated first:

a=5*(6+3)

Page 19

The following table lists the Blitz2 operators grouped in order of priority (LHS=left hand
side, RHS=right hand side). Operators in the same box have the same priority.

NOT
-

RHS logically NOT’ed
RHS arithmetically negated

BITSET
BITCLR
BITCHG
BITTST

LHS with RHS bit set
LHS with RHS bit cleared
LHS with RHS bit changed
True if LHS bit of RHS is set

^ LHS to the power of RHS

LSL
ASL
LSR
ASR

LHS logically shifted left RHS times
LHS arithmetically shifted left RHS times
LHS logically shifted right RHS times
LHS arithmetically shifted right RHS times

&
|

LHS logically AND’ed with RHS
LHS logically OR’ed with RHS

*
/

LHS multiplied by RHS
LHS divided by RHS

+
-

LHS added to RHS
RHS subtracted from LHS

=
<>
<
>
<=
>=

True if LHS is equal to RHS
True if LHS is not equal to RHS
True if LHS is less than RHS
True if LHS is greater than RHS
True if LHS is less than or equal to RHS
True if LHS is greater than or equal to RHS

AND
OR

LHS logically AND’ed with RHS
LHS logically OR’ed with RHS

Boolean Operators
The boolean system can only operate with two values, true and false. In Blitz2 false is
represented by the value 0, true with the value -1.

The operators =, <>, <=, =>, > and < all generate a boolean result (true or false).

NPrint 2=2 will print value -1 as the result of the operation 2=2 is true. The operators OR,
AND and NOT can be used as boolean operators, NPrint 2=2 AND 5=6 will print 0 as the
result is false. OR operator returns true if either left or right hand side is true. NOT operator
returns false if the following operand is true and true if the operand is false.

Page 20

Binary Operators
Many of Blitz2 operators perform binary type arithmetic. These operations are very fast as
they directly correspond to instructions built into the computer's processor.

The binary system means that all numbers are represented by a series of 1s and 0s. A byte
is made up of X such bits, a word 16 and a long word 32.

Multiple Commands
The following program starts a with a value of 0, it then proceeds to add 12 to the value of
a and print the result 4 times.

a=0
a=a+12:NPrint a
a=a+12:NPrint a
a=a+12:NPrint a
a=a+12:NPrint a

MouseWait

Note how we can put two commands on the same line by separating each command with a
colon character. Also, the first line a=0 is not needed as variables in Blitz2 always start out
with a value of 0 anyway.

A Simple Loop
The following program prints out the 12 times table. Instead of typing in 12 lines to do this
we use a For...Next loop. A loop is where the program is told to repeat a section of the
program many times.

For i=1 To 12...Next will execute the commands between the For and Next 12 times, the
variable i is used to keep count.

The asterisk * means multiply so a=i*12 means the variable a now equals 12 x the variable
i. Because i is counting up from 1 to 12 the variable a is assigned the values 12, 24, 36,
48... as the program loops.

For i=1 To 12
 a=i*12
 NPrint i,”*”,12,”=”,a
Next

MouseWait

Note how the two lines inside the loop are indented across the page. This practice makes it
easy to see which bits of the program are inside loops and which are not.

Page 21

The Tab key can be used to move the cursor across the page so many spaces when typing
in lines that are indented.

Now try changing the first line to For i=1 To 100, as you can see the computer has no
problem what so ever doing its 12 times table!

We could also change the number 12 in the first 3 lines to any other number to generate an
alternative times table.

Nested Loops
The following program is an example of nesting loops, a term that refers to having loops
inside of loops. By indenting the code that is inside inner loop even further we can keep a
check to make sure each For statement lines up with each Next statement.

For y=1 To 12
 For x=1 To 12
 NPrint y,”*”,x,”=”,x*y
 Next
Next

MouseWait

The nesting of the For x=1 To 12 inside the For y=1 To 12 means the line inside the For x
will be executed 12 x 12 times, each time with a new combination of x and y.

While...Wend and Repeat...Until
There are two other simple ways to program loops in Blitz2 besides using For...Next.
While...Wend and Repeat...Until loops are used as follows:

While a<20
 NPrint a
 a=a+1
Wend

Repeat
 NPrint a
 a=a+1
Until a>=20

As with a lot of BASIC commands they are pretty much self explanatory, the inside of a
While...Wend will be repeated while the condition remains true. A Repeat...Until will loop
until the condition is true.

A condition can be any evaluation such as While a+10<50, While f=0, While b<>x*2 and
so-on.

Page 22

The difference between the two loops above is that if a was greater than 20 to start with,
the Repeat...Until would still execute the code inside the loop once, where as the
While...Wend would not.

Endless Loops
When a program gets into the situation of repeating a loop forever it is called an endless
loop. In this situation the programmer must be able to override the program and tell it to
stop.

To interrupt a program the Ctrl/Alt C keyboard sequence must be used. Holding down the
Ctrl key and the Left Alt key press C, this will stop the program and the debugger screen
will appear. To exit from the debugger and return to the editor use the Esc key (top left of
the keyboard). The debugger is covered in detail in Chapter 5.

Using String Variables
Variables that contain text are called string variables. String variables require $ sign after
their names. Following shows a simple example of a string variable:

a$=”Chris”
NPrint a$
MouseWait

Similar to numeric variables the = sign is used to assign the string variable a value. The +
sign can be used to add strings together (concatenate):

a$=”Chris “:b$=”Forrester”:c$=a$+b$

The variable c$ will now contain the string “Chris Forrester”. Other functions that
manipulate strings are detailed in the reference section of this manual.

Program Flow
Often a program will have to decide to do either one thing or another, this is called program
flow. The If Then commands are used to tell the program to do something only if some
condition is true. The following will only print "Hello" if the variable a has the value 5:

If a=5 Then Print “Hello”

Page 23

The above line could be changed to do a section of commands if a was equal to 5 using the
IF...Endif structure:

If a=5
 Print “Hello”
 a=a-1
Endif

The Else command is used to execute an alternative section if the condition is not true:

If a=5
 Print “Hello”
Else
 Print “Good-bye”
Endif

Note how we indent code inside conditional blocks just like we did with loops. This makes
the code more readable, it is easier to see which lines of code will be executed when the
condition is true etc.

The condition after the If command can be any complex expression, the following are
some examples of possible test conditions:

If a=1 Or b=2
If a>b+5
If (a+10)*50<>b/7-3

An appendix at the end of this manual contains a complete description of using multiple
operators and their precedence.

Jumpin’ Around
Often the program will need to jump to a different section of the code. The Goto and Gosub
routines are used for this. The location that the program is jumping to needs a label so that
Goto and Gosub can reference the location they are jumping to. The following uses the
label start:

Goto start
NPrint “HI THERE”
start

MouseWait

The Goto statement makes the program jump to label start and “Hi There” is never printed.
The Gosub command is used to jump to a subroutine. This is a piece of code terminated
with a Return statement. This means that after executing the subroutine, program flow
returns to where the Gosub command was executed and carries on.

Page 24

.start:
 Gosub message
 Gosub message
 Gosub message
 MouseWait
 End

.message
 NPrint “Hello”
 Return

Note how labels are preceded with a period. This makes them appear in a list on the right
of the editor screen. We can make the cursor jump to a label by clicking it in this list. This is
extremely useful for when editing large programs.

Getting Input from the User
A program will often require input from the user when it is running either via the keyboard
or mouse. For instance, the MouseWait command will stop the program until the user clicks
the left mouse button.

Keyboard input can be obtained using the Edit and Edit$ functions which is the same as the
Input command in other languages.

The following asks the user for their name and places it into a string variable:

Print “What is your name?”
a$=Edit$(80)
NPrint “Hello “,a$
MouseWait

Number 80 in Edit$(80) refers to maximum number of characters the user can type. To
input numbers from the user the Edit function is used, a=Edit(80) will let the user type in
any number up to 80 digits long and will place it in the variable a.

Arrays
Often a program will need to manipulate groups of numbers or strings. An array is able to
hold such groups. If we needed to keep track of ten numbers that were all related, instead
of using ten different variables we can define an array to hold them.

The Dim statement is used to define an array:

Dim a(10)

Page 25

The variable a can now hold 10 (actually 11) numbers and to access them we place an
index number inside brackets after the variable name:

a(1)=5
a(2)=6
a(9)=22
NPrint a(9)
a(1)=a(1)+a(2)
NPrint a(1)

The power of an array is that the index number can be a variable, if i=2 then a(i) refers to
the same variable, is a(2).

The following inputs 5 strings from the user using a For...Next loop. Because the strings are
placed in an array they can be printed back out:

Dim a$(20)

NPrint “Type in 5 names”
For i=1 To 5
 a$(i)=Edit$(80)
Next

NPrint “The names you typed were”
For i=1 To 5
 NPrint a$(i)
Next

MouseWait

Page 26

3. TYPES, ARRAYS AND LISTS

Numeric Types
Blitz2 supports 6 different types of variables and there are 5 numeric types for storing
numeric values with differing ranges and accuracies as well as a string type used to store
strings of characters (text).

The following table describes each Blitz2 numeric variable type with details on its range
and accuracy and how many bytes of memory each requires.

Type Suffix Range Accuracy Bytes
Byte .b +-128 integer 1
Word .w +-32768 integer 2
Long .l +-2147483648 integer 4
Quick .q +-32768.0000 1/65536 2
Float .f +-9*10/\18 1/10/\18 4

The Quick type is a fixed point type, less accurate than floating point but faster.

The Float type is the Floating Point type supported by the Amiga last FP libraries.

A variable is assigned a certain type by adding the relevant suffix to its name after the first
reference to a variable, its type is assigned and any future references do not require the
suffix unless it is a string variable.

Following are some examples of typical numeric variables with their relevant suffix.

mychar b=127
my_score.w=32000
chip.l=$dff000 ;$ denotes a hex value
speeD3.q=500/7 ;a quick has 3 decimal place accuracy
light_speed.f=3e8 ;e is exponent i.e. 3X10A8

Default Types
If no suffix is used in the first reference of a variable, Blitz2 will assign that variable with the
default type. This is initially the Quick type.

There are two forms of the DefType command, one which changes the default type the
other which defines the type of a list of variables supplied but which does not affect the
default type.

Page 27

The following code illustrates both uses of DEFTYPE:

a=20 ;a will be a quick
DEFTYPE .f ;vars without suffix will now default to float
b=20 ;b will be a float
DEFTYPE .w c,d ;c & d are words, default still float

Note: the second instance of DEFTYPE should be read define type rather than its first use
which stands for change default type. The default type can also be set to a newtype (see
the following section).

Other Blitz2 structures that work with certain type such as data statements, functions,
peeks and pokes will also use default type if no type suffix is included.

The Data Statement
Used to hold a list of values that can be read into variables.

The Restore command is used to point the data pointer at a certain Data statement.

A type suffix is added to data statement to define what type the values listed are.

The following is an example of using Data in Blitz2:

main:
 Read a,b,c
 Restore myfloats
 Read d,f
 Restore mystrings
 Read e$,f$,g$
myquicks:
 Data 20,30,40
myfloats:
 Data.f 20.345,10.7,90.111
mystrings:
 Data$ “Hello”,”There”,”Simon”

Note: If the data pointer is pointing to a different type than the variable listed in the Read
statement a Mismatched Types runtime error occurs.

Numeric Overflow & Unsigned Integers
When a variable is assigned a value outside of its range (too large), an overflow error will
occur. The following code will cause an overflow error when it is executed:

a.w=32767 ;a is a word containing the number 32767
a=a+1 ;overflow occurs as result is out of range

Page 28

Overflow checking is optional and can be enabled/disabled in the runtime errors options of
the Compiler Configuration. The default setting is off meaning the above code will not
generate a runtime error. In some instances, the integer types will be required to represent
unsigned (positive only) numbers. For example, a byte variable will be required to hold
values between O and 255 rather than -127 to 128. Overflow checking has to be disabled
in the Error Checking requester of the Compiler Options window to use unsigned ranges
such as this.

String Types
A string is a variable that is used to store a string of characters, usually text. The suffix for a
string variable is either a .s or the traditional $ character.

Unlike numeric variables the suffix must always be included with the name. Also, string
variable names MAY be re-used as numeric variable names.

The following is quite legal:

a$=”HELLO”
a.w=20
NPrint a,a$

System Constants
Blitz2 reserves a few variables that hold special values known as system constants. The
following variables are reserved and contain the listed values:

Pi = 3.1415
On = -1
Off = 0
True = -1
False = 0

Primitive Types Summary
Blitz2 currently supports 6 primitive types. Byte, word and long are signed 8, 16 and 32 bit
variable types. The quick type is a fixed point type, less accurate than FP but faster. The
float type is the FP type supported by the Amiga fast FP libraries.

The string type is a standard BASIC implementation of string variable handling.

Using DefType directive variables can be defined as certain types without adding the
relevant suffix. Once a variable is defined as a certain type, the suffix is not necessary,
except in the case of string variables when the suffix must always be included.

A variable can only be of one type throughout the program and cannot be defined as any
other except again in the case of strings where the variable name can ALSO be used for a
numeric type.

Page 29

NewTypes
In addition to the 6 primitive types available in Blitz2, programmers also have available the
facility to create their own custom types.

A NewType is a collection of fields, similar to a record in a database or a C structure. This
enables the programmer to group together relevant fields in one variable type.

The following code shows how fields holding a person’s name, age and height can be
assigned to one variable:

NEWTYPE .Person
 name$
 age.b
 height.q
End NEWTYPE

a.Person\name=”Zeb”,20,2.1
NPrint a\height

Once a NewType is defined, variables are assigned the new type by using a suffix
of .NewTypename for example a.Person

Individual fields within a NewType variable are accessed and assigned with the backslash
character ‘\’ for example: a\height=a\height+1.

When defining a NewType structure, field names without a suffix will be assigned the type
of the previous field. More than one field can be listed per line of a NewType definition but
they must however be separated by colons. The following is another example of a NewType
definition:

NewType .name
 x.w:y:z ;y & z are also words (see above)
 value.w
 speed.q
 name$
End NewType

References to string fields when using NewTypes do not require $ or .s suffix as normal
string variables do, including suffix will cause Garbage at End compile time error.

From the first example:

a\name=”Jimi Hendrix” ;this is cool
a\name$=”Bob Dylan” ;this is uncool!

Page 30

Previously defined NewTypes can be used within subsequent NewType definitions. The
following is an example of a NewType which itself includes another NewType:

NewType .vector
 x.q
 y.q
 z.q
End NewType

NewType .object
 position.vector
 speed.vector
 acceleration.vector
End NewType

DefType .object myship ;see following paragraph!

myship\position\x=100,0,0

Note how we now need to use two backslashes to access the fields in myship just like a
pathname in DOS.

A NewType, once defined, can be used in combination with both forms of the DefType
command just as though it was a another primitive type.

Arrays Inside NewTypes
Besides including primitives and other NewTypes within NewTypes, it is also possible to
include arrays inside NewTypes. The square brackets [and] are used when defining arrays
inside NewTypes.

Unlike normal arrays, arrays in NewTypes are limited to a single dimension and their size
must be dimensioned by a constant not a variable. However the array may be of any type
including NewTypes.Also unlike arrays, the dimension size between the square brackets is
the size of the array so address.s[4] allocates 4 strings indexed 0...3. The following is an
example of using an array inside a newtype:

NEWTYPE .record
 name$
 age.w
 address.s[4] ;same as address$[4]
End NEWTYPE

DEFTYPE .record p

p\address[0]=”10 St Kevins Arcade”
p\address[1]=”Karangahape Road”
p\address[2]=”Auckland”
p\address[3]=”New Zealand”

Page 31

For i=0 To 3
 NPrint p\address[i]
Next

MouseWait

The [index] can be omitted in which case the first item (item 0) will be used.

Defining an array inside a newtype with 0 elements creates a union with the following field
(both fields occupy the same memory in the NewType).

The UsePath Directive
Often when using complex NewTypes, path names to access fields within fields can
become very long.

Often a routine will be dealing only with one particular field within a NEWTYPE. By using
the UsePath directive large path names can be avoided.

When a backslash precedes a variable or field name Blitz2 will insert the UsePath path
definition when it compiles the program.

The following code:

UsePath shapes(i)\pos

For i=0 To 9
 \x+10
 \y+20
 \z-10
Next

is expanded internally by the compiler to read:

For i=0 To 9
 shapes(i)\pos\x+10
 shapes(i)\pos\y+20
 shapes(i)\pos\z-10
Next

UsePath can help make routines a lot more readable and can save a lot of typing!

Note: UsePath is a compiler directive, meaning that it affects the compiler as it reads
through your program top to bottom not the processor when it runs your program.

This means that if a routine jumps to somewhere else in the program the UsePath in effect
will be governed by the closest previous UsePath in the listing.

Page 32

ARRAYS
Arrays in Blitz2 follow normal BASIC conventions. All Arrays MUST be dimensioned before
use, may be of any type (primitive or NewType) and any number of dimensions.

All arrays are indexed from 0...n where n is the size. As with most BASICs an array such as
a(50) can actually hold 51 elements indexed 0...50 inclusive.

An array will be of default type unless a .type suffix is added to the array name:

Dim a.w(50) ;fan array of words

The ability to use arrays of NewTypes often reduces the number of arrays a BASIC program
actually requires.

The following:

Dim Alienflags(100),Alienx(100),Alieny(100)

can be implemented with the following code:

NEWTYPE .Alien
 flags.w
 x.w
 y.w
End NEWTYPE
Dim Aliens.Alien(100)

You may now access all of the required alien data using just one array. To set up all of the
aliens x and y entries with random coordinates

For k=1 To 100
 Aliens(k)\x=Rnd(320),Rnd(200)
Next

This also makes it much easier to expand the amount of information for the aliens simply
by adding more entries to the NewType definition, no new arrays required.

Note: unlike most compilers, Blitz2 DOES allow the dimensioning of arrays with a variable
number of elements for example: Dim a(n). Also strings in arrays do not require a
maximum length setting as is the case with some other languages.

Page 33

LISTS
Blitz2 also supports an advanced form of the array known as the list. Lists are arrays, but
with slightly different characteristics.

Often only a portion of the elements in an array will be used and the programmer will keep
a count in a separate variable of how many elements are currently stored in the array. In
this situation the array should be replaced with a list which will make things both simpler
and faster for managing the array.

Dimming Lists
A list is dimensioned similar to an array except the word List is inserted after the word Dim.
Lists are currently limited to only one dimension.

Here is an example of setting up a list:

NEWTYPE .Alien
 flags.w:x:y
End NEWTYPE

Dim List Aliens.Alien(100)

The difference between a list and an array is that Blitz2 will keep an internal count of how
many elements are stored in the list (reset to zero after a Dim List) and an internal pointer
to the current element within the list (cleared after a Dim List).

Adding Items to a List
A list starts out as empty, items can be added using the AddItem and AddLast functions.
Because the list might be full both commands return a true or false to indicate whether
they succeeded.

The following adds one alien to the previously dimmed list:

If AddItem(Aliens())
 Aliens()\x=Rnd(320),Rnd(200)
Endif

Note how there is no index variable inside the brackets in either use of Aliens(). Although
Blitz2 will not flag an error when an index is used, indexes should never be used with list
arrays. The empty brackets represent the current item in the list, in this case, the newly
added item.

Page 34

Because AddItem returns false when the list is full we can use a While...Wend loop to fill an
entire list with aliens (then kill ‘em off slowly!):

While AddItem(Aliens())
 Aliens()\x=Rnd(320)
 Aliens()\y=Rnd(200)
Wend

The above loops until the list is full. If we wanted to add 20 aliens to a list we could use a
For...Next but still need to check if the list was full each time we add an alien:

For i=1 To 20
 If AddItem(Aliens())
 Aliens()\x=Rnd(320)
 Aliens()\v=Rnd(200)
 Endif
Next

Note that lists can be dimensioned to hold any type not just aliens!

Processing Lists
As mentioned, when an item is successfully added, that item becomes the current item.
This current item may then be referenced by specifying the list array name followed by
empty brackets ().

To process a list (loop through all the items added to a list), we reset the list pointer to the
beginning using ResetList and then use the NextItem command to step the pointer through
the items in the list. This internal pointer points to the current item.

The following moves all the aliens in the list in a rather ineffective manner (towards the
middle of the screen I suspect):

USEPATH Aliens()
ResetList Aliens()

While NextItem(Aliens())
 If \x>160 Then \x-1 Else \x+1
 If \y>100 Then \y-1 Else \y+1
Wend

The While NextItem(Aliens())...Wend structure loops until each item in the list has been the
current item. This means that any alien that has been added to the list will be processed by
the loop.

The function NextItem returns false if the loop comes to the end of the list.

Page 35

Again, NextItem returns a true or false depending on whether there actually is a next item
to be processed. This example illustrates the convenience lists offer over normal arrays, no
"For i=1 To num" to step through arrays using the old index method, instead a clean
While...Wend with a system that is faster than normal arrays!

Removing Items From a List
It is often necessary to remove an item from a list while you are processing it. This may be
achieved with KillItem. This example again works with the Aliens list:

ResetList Aliens()
While NextItem(Aliens())
 If Aliens()\flags=-1 ;if flag=-1
 KillItem Aliens() ;remove item from list
 Endif
Wend

Note: After a KillItem, the current item is set to the previous item. This means the While
NextItem() loop will not miss an item if an item is removed.

List Structure
Although it is possible to access items in a list by treating them as normal arrays with an
index variable it should never be attempted.

The order of items in a list is not always the same as the order they are in memory. Each
item contains a pointer to the item before and the item after. When Blitz2 looks for a next
item it just looks at the pointer attached to the current item and its physical memory
location is NOT important. When an item is added to a list, an arbitrary memory location is
used, the current item's NextItem pointer is changed to point to the new item and its old
value is given the new items NextItem pointer.

Confused? Well don't worry, just don't ever treat lists as normal arrays by trying to access
items with the index method.

The Pointer Type
This is a complex beast in Blitz2. When you define a variable as a pointer type you also
state what type it is pointing to. The following defines biggest as a pointer to type
Customer.

DefType *biggest.Customer

The variable biggest is just a long word that holds a memory location where some other
Customer variable is located.

Page 36

For example, we may have a large list of customers. Our routine goes through them one by
one and if the turnover of a customer is larger than the one pointed to by biggest then we
point biggest towards the current customer:

*biggest=CustomerArray()

Once we have looped through the list we could print out the biggest data just as if it was
type Customer when it is actually only a pointer to a variable with type customer with the
following code:

Print *biggest\name

Page 37

4. PROCEDURES

Introduction
A procedure is a way of ‘packaging’ routines into self contained parts of the program. Once
a routine is packaged into a procedure, it can be called from your main code. Parameters
can be passed, and an optional value returned to your main code. Because a procedure
contains its own local variable space, you can be sure that none of your main or global
variables will be changed by the calling of the procedure. This feature means procedures
are very portable, in effect they can be ported to other programs with out conflicting
variable name hassles.

Procedures that return a result are called functions in Blitz2, ones that do not return a
result are known as statements.

Functions and Statements in Blitz2 have the following characteristics:

• The number of parameters is limited to 6

• Gosubs and Gotos to labels outside a procedure's code is strictly illegal

• Any variables used inside a procedure will be initialised with every call Statement

Statements
A procedure that does not return a value is called a Statement in Blitz2. An example of a
statement type procedure which prints the factorial of a number is:

Statement fact{n}
 a=1
 For k=2 To n
 a=a*k
 Next
 NPrint a
End Statement

For k=1 To5
 fact{k}
Next

MouseWait

Use of curly brackets { and } to both define parameters for the procedure, and in calling the
procedure. These are required even if the procedure requires no parameters.

If you type in this program, compile and run it, you will see that it prints out the factorials of
the numbers from 1 to 5. You may have noticed that the variable k has been used in both
the procedure and the main code. This is allowable because the k in the procedure is local
to the fact procedure, and is completely separate from the k in the main program. The k in
the main program is known as a global variable.

Page 38

You may use up to six variables to pass parameters to a procedure. If you require more
than this, extra parameters may be placed in special shared global variables.

Also, variables used to pass parameters may only be of primitive types, you cannot pass a
NewType variable to a procedure however you can pass pointer types.

Functions
In Blitz2, you may also create procedures which return a value, known as functions. The
following is the same fact procedure implemented as a function:

Function fact{n}
 a=1
 For k=2 To n
 a=a*k
 Next
 Function Return a
End Function

For k=1 To5
 NPrint fact{k}
Next

MouseWait

Note how Function Return is used to return the result of the function. This is much more
useful than the previous factorial procedure, as we may use the result in any expression we
want. For example:

a=fact{k}*fact{j}

A function may return a result of any of the 6 primitive types. To inform a procedure what
type of result you are wanting to return, the type descriptor may be appended to Function
command. If this is omitted, current default type will be used (normally .q).

The following is an example of a string function:

Function$ spc{n}
 For k=1 To n
 a$=a$+” “
 Next
 Function Return a$
End Function

Print spc{20},”Over Here!”

MouseWait

Page 39

Recursion
The memory used by a procedure's local variables is unique not only to the actual
procedure, but to each calling of the procedure. Each time a procedure is called a new
block of memory is allocated and freed only when the procedure ends.

The implications of this are that a procedure may call itself without corrupting its own local
variables. This allows for a phenomenon known as recursion. Here is another version of the
factorial procedure which uses recursion:

Function fact{n}
 If n>2 Then n=n*fact{n-1}
 Function Return n
End Function

For n=1 To 5
 NPrint fact{n}
Next

MouseWait

This example relies on the concept that the factorial of a number is actually the number
multiplied by the factorial of one less than the number.

Accessing Global Variables
Sometimes it is necessary for a procedure to access one or more of a programs global
variables. For this purpose, the Shared command allows certain variables inside a
procedure to be treated as global variables.

Statement example{}
 Shared k
 NPrint k
End Statement

For k=1 To 5
 example{}
Next

MouseWait

The Shared command tells Blitz2 that the procedure should use the global variable k
instead of creating a local variable k. Try the same program with the Shared removed. Now,
the k inside the procedure is a local variable, and will therefore be 0 each time the
procedure is called.

Page 40

Procedures Summary
Blitz2 supports two sorts of procedures, the function and the statement. Both are able to
have their own local variables as well as access to global variables through the use of the
Shared statement.

Up to six values can be passed to a Blitz2 procedure.

A Blitz2 function can return any primitive type using the Function Return commands.

Using Assembler in Blitz Procedures
Procedures also offer an excellent method of incorporating assembly language routines
into Blitz programs.

The Statement or Function is defined as usual with a list of parameters enclosed in curly
brackets. When using assembler, the parameters passed to the procedure are loaded in
data registers D0-D5.

Care must be taken to ensure that address registers A4-A6 are restored to their initial state
before the code exits from the procedure using the AsmExit command.

To set the return value in assembler for Functions simply load the register D0 with the
value before the AsmExit command.

For an example of an assembler procedure in Blitz, turn to page 68.

Page 41

5. BLITZ ERROR CHECKING AND DEBUGGING

Compile Time Errors
Blitz2 reports two types of errors. Compile time errors are those found when Blitz attempts
to compile your code and runtime errors occur when the program is being executed.

The first type, compile time errors, cause a message to appear on the editor screen. When
OK is selected you are returned to the offending line of code in your program.

Appendix 2 of the Blitz2 Reference Manual contains a description of all the possible errors
at compile time. The following list repeats some Blitz2 rules that have to be abided by for
your program to be successfully compiled:

1. Any Blitz functions (commands that return a value) must have their parameters
contained inside brackets:

If ReadFile(0,”ram:test”)

2. Blitz commands that are not functions must not have their parameter in brackets:

BitMap 0,320,256,3

3. Using a .type suffix when referring to items in a NewType will cause garbage at end of
line error:

person\name$=”Ivan” ;(drop the $)

4. A numeric variable can only be one .type, a Mismatched Type error will occur if you
attempt to use a different .type suffix further down the program with the same variable
name (with the exception of string variables).

Of course there are many hundreds of mistakes that can cause your program to fail to
compile, most will require a quick look in the Blitz2 Reference Manual to check the syntax
of a command and maybe cross reference your code with one of the examples.

Don't forget the Help key can be used to quickly check the syntax of a command.

The CERR Directive
When using macros and conditional compiling you may wish to generate your own compile
time errors.

The CERR directive is used to generate user defined compile time errors. The following will
halt the compiler and generate the message, “Should Have 3 Parameters”:

CERR “Should Have 3 Parameters!”

See conditional compiling in Chapter 9 for more information on CERR.

Page 42

Runtime Errors
Errors that occur while your program is executing are called runtime errors. When
developing programs in Blitz, the Runtime Error Debugger should always be enabled on the
Compiler Options. If it's not and an error occurs the system will crash.

If you need to run your program without runtime errors enabled for speed purposes a
SetErr directive should be included to stop the system crashing, the system will then jump
to the code listed after the SetErr.

The following line included at the top of your program is suggested:

SetErr:End:End SetErr

Any programs that use file handling should always include some sort of error trapping to
handle situations where program cannot locate a file, or the file is of the wrong type.

Any operating system based software should also always include error checking as screens
and windows may fail to open due to low memory.

You may also setup an error handler just for one section of code. The SetErr...
errorhandler...End SetErr should be at the start of the section and a ClrErr at the end. The
following will flash the screen and end if LoadShapes fails:

SetErr
 DisplayBeep_ 0
 End
End SetErr

LoadShapes 0,”filename”

ClrErr

The Blitz Debugger
If a runtime error occurs when the program is run from the editor, the Blitz2 debugger will
be activated. Runtime errors must also be enabled in the compiler options requester.

The debugger will not be activated if there is an error-handler already enabled in the
program using the SetErr command.

The debugger can also be activated by using the CTRL/ALT C keys, clicking on the “BRK”
gadget of the debugger window or including a STOP command in your program.

Page 43

The debugger is a powerful tool in finding out causes of errors and locating bugs. The
ability to step back through code executed prior to the break gives the programmer an
excellent understanding of how an error has occurred. The following is a screenshot of the
debugger after the program encountered a STOP command.

Note, by making the debugger window larger more of the program can be viewed.

The Debugger Gadgets
The following is a description of the debugger gadgets:

BRK Click on this to stop a program running and enable the Blitz debugger.

STP Use this to stop a program during Trace mode.

SKP Skip causes the debugger to skip a command, program execution will continue from
the next command.

TRC Trace mode allows the programmer to single step through their code, by increasing
the size of the debugger window program flow can be viewed.

RUN Causes program execution to resume after being stopped.

<< View previous command history allows the programmer to review the commands
that were executed prior to the program being stopped.

>> View forward allows the user to forward through the command history after using
the view previous gadget.

EXC Execute allows the programmer to manually enter a Blitz command to be executed
by the debugger.

EVL Evaluate allows the programmer to view any variable simply by entering its name
after clicking on EVL.

Page 44

Tracing Program Execution
The debugger allows the user to single step through or trace program execution, displaying
in its window which command is currently being executed.

STP is used to single step through your program, each time you click on STP the debugger
will execute the command pointed to by the arrow and stop. Trace steps continuously
through the code displaying each command as it goes. To stop the Trace you must use the
STP gadget.

Level is used to change the trace level, if Level is ON, the debugger will not trace or single
step through the inside For...Next loops but execute normally until loop exits.

It will also not trace the execution of any procedures or subroutines called, this is most
useful for watching the program’s main loop while not having to sit through the trace of
each subroutine when called.

Page 45

Resuming Normal Execution
Program execution return normally after debugger is activated using Run gadget.

If the debugger was activated using the STOP command the arrow will be pointing to STOP.
Before continuing, the command must be skipped over using the Ignore command. This is
true for any command that has caused a runtime error and invoked the debugger.

To return to the editor from the debugger either hit the Escape key or click on the close
window gadget of the debugger window.

Viewing Command History
The debugger keeps a record of the commands executed before the program is stopped in
a large buffer.

The Back-up command will step backwards from where the program halted, allowing the
programmer to view the previous commands executed by the computer. A hollow arrow
marks the current position in the history buffer.

Forward command is used to step forwards through the history buffer, attempting to step
past where the program was stopped will produce a AT END OF BUFFER error.

These features are invaluable to following through program execution up to where the
program was halted. If a program halted in the middle of a subroutine or procedure you
can step backwards to find where the routine was called from.

Direct Mode
While the debugger is activated the programmer has two tools available to examine the
internal state of the program.

To find out the value of any variables the EVaLuate command can be used. A prompt will
appear, after typing the name of the variable and hitting return the value will be printed on
the debugger display.

The EXeCute command is used to run a Blitz2 command. A prompt will appear and the
programmer can then type in any Blitz2 command such as CLS or n=20.

Page 46

Debugger Errors
The following errors may occur when using direct mode commands Evaluate & eXecute:

Can’t Create in Direct Mode
Occurs if you try and Evaluate a non existent variable (not created) in the program.

Library Not Available in Direct Mode
This occurs when a Blitz2 command is executed and is from a command library not used
by the program. If, for instance, the program doesn't use strings, the string command
library will not be part of the object code and so any string type commands will not be able
to be executed and generate this error.

Not Enough Room in Direct Mode Buffer
This error should never occur. If it does the object butter size in the Compiler Options
requester should be increased.

AT END OF BUFFER
Occurs if the programmer tries to view forward of where the program stopped.

Page 47

6. BLITZ OBJECTS

This chapter covers the use and handling of Blitz2 objects, structures designed to control
multiple system elements such as graphics, files, screens, etc.

Blitz2 looks after all memory requirements for objects including freeing it up when the
program ends.

Although most objects have their own specific commands, the standard way they are
handled in Blitz2 means the programmer is never faced with unusual syntax. Instead they
can depend on a standard modular way of programming the multitude of elements
available in Blitz2.

The following is a list of the main Blitz2 objects:

files for sequential and random access DOS file handling
modules SoundTracker compatible music objects
blitzfonts 8x8 fonts for fast bitmap text output
intuifonts any size fonts for window text output
shapes standard Blitz2 graphics element
palettes colour palette structure
bitmaps standard Blitz2 display element
sounds digitised sound sample element
sprites Blitz mode hardware sprite element
screens standard Intuition type screens
windows standard Intuition type windows
gadgets standard Intuition type gadgets
menus standard Intuition type menus

Object Similarities
Blitz2 objects all have a set of commands allowing the program to create or define them,
manipulate and of course destroy them.

Most objects have a chapter in the Blitz2 reference manual devoted to them, outlining all
the special commands used to create and manipulate the object. All Blitz2 objects can be
destroyed using the Free command. If an object has not been destroyed when a program
ends, Blitz2 will automatically Free that object.

Free BitMap 0 will free up all memory allocated for object bitmap 0, this is useful when
using objects temporarily and will need memory later in the program, otherwise it’s usual
to let Blitz free up all objects automatically when program ends.

Page 48

Object Maximums
Each object has its own maximum. This number defines how many of one type of object
can be created and manipulated by the program. The maximum can be changed for each
object in the Compiler Options window of the editor.

The runtime error Value Out of Maximum Range means you have tried to use an object
number greater than that set in the maximums window of Compiler Options.

Using an Object
Many commands need previously created objects present to operate properly. For
example, the Blit command, which is used to place a shape onto a bitmap, needs both a
previously created shape object and a bitmap object.

When you use the Blit command, you specify the shape object to be blitted and Blitz will
blit that shape onto the currently used bitmap.

Use BitMap 0 ;make bitmap the currently used bitmap
Blit 3,10,10 ;blit shape 3 onto currently used bitmap

The Use command in the previous example makes BitMap 0 the currently used bitmap.
Screens, Windows and Palettes are three other Blitz2 objects that often need to be
currently used, for commands to work properly.

Note, when an object is created, it becomes the currently used object of its class.

Blitz2 makes extensive use of this currently object idea. Its advantages include faster
program execution, less complex commands and greater program modularity.

Input/Output Objects
Bitmap, file and window objects can all operate as I/O devices. ObjectInput and
ObjectOutput commands allow the user to channel input and output to different places.

The Print command will always write to the current output object, edit and inkey$ will
always attempt to read from the current input object.

WindowOutput 2 ;window 2 is the current output object
Print “HELLO”
BitMapInput 1 ;make bitmap 1 the current input object
a$=Edit$(80)

Page 49

Object Structures (for advanced users)
Appendix 1 of the Blitz2 reference manual contains descriptions of each of the Blitz2
object’s structures. The Addr command is used to find the location in memory the structure
of a particular object.

Advanced users can use the Addr command with Peek & Poke and inline assembler
routines to access important values in an object’s structure. This is often helpful with
system type objects such as Screens and Windows that contain pointers to their Intuition
counterparts.

The following calls the system command ScreenToFront_ obtaining the location of the
Intuition Screen structure from the Blitz2 Screen object in memory.

ScreenToFront_ Peek.l(Addr Screen(0))

The next listing illustrates obtaining a window’s system structure and assigning it to a
pointer type .window. AmigaLibs.Res should be resident before run this example.

FindScreen 0
Window 0,10,10,100,100,9,”SIZE ME!”,1,2
*w.Window=Peek.l(Addr Window(0))
WindowOutput 0
Repeat
 ev.l=WaitEvent
 WLocate 0,0
 NPrint *w\Width
 NPrint *w\Height
Until ev=$200

Note: the NewType .Window refers to the system (Intuition) window structure where as the
NewType .window refers to the Blitz2 window structure.

Overview of the Primary Blitz2 Objects

Screens
These are created using Screen and FindScreen commands. The first will open a new
screen while the second will make an existing screen (usually Workbench screen) a Blitz2
screen.

Free Screen n should only be attempted after any windows open on the screen are closed
(free’d) first.

Screen objects both configure the resolution of the display and its palette as well as being
the place where windows are opened. Any windows opened, RGB or UsePalette commands
will use the currently used screen.

The function Peek.l(Addr Screen(n)) can be used to obtain the location of the
system .Screen structure when calling system routines.

Page 50

Windows
Created with the Window command. Gadgets and menus are always added to the currently
used window while the drawing commands WPlot, WCircle, WLine and WBox all render to
the currently used window.

Window objects can be used for input/output using WindowInput and WindowOuput
commands. The cursor position for in/out can be controlled with WLocate command.
Windows can be freed without worry of freeing any attached gadget or menulists.

Gadget and Menu Lists
Gadgets and menus must be grouped together in Blitz objects known as yes, you guessed
it, gadgetlists and menulists. These lists are attached to a window when the window is first
created (opened). This means that gadgets and menus should all be pre-defined in their
lists at the start of the program.

Palettes
A palette object contains RGB information for each of the colours in a display. Palettes are
a little different to regular Blitz objects in the following ways.

Use Palette will set the current screen or slice to the colours in the palette.

The RGB command as well as the Red(), Green() and Blue() functions apply to the colours
in the current slice or screen NOT in the current palette.

There is no create palette command, they are either created when loaded from an IFF file
or when using PalRGB. If no palette object exists with either command Blitz2 will create
one for you.

BitMaps
A bitmap refers to the array of pixels that make up the display. A bitmap can either be
created with the BitMap command, loaded from disk or fetched from a screen using the
ScreensBitMap command.

A bitmap command can be freed using the Free BitMap n command, you can not free
bitmaps created with the ScreensBitMap command.

As with windows, bitmaps can be used as input/output devices with BitMapInput and
BitMapOutput commands. These are used primarily in BlitzMode.

In BlitzMode the keyboard should be enabled with BlitzKeys On before attempting to use
BitMapInput.

When using BitMapOutput the Locate command can be used to position the cursor.

Page 51

Shapes
Shapes are used to contain graphic images. They can be initialised by either loading them
from disk or being clipped from a bitmap object using GetAShape command.

Shapes are freed using standard Free Shape n syntax. Shapes should not be freed if they
are used with gadgets or menu items until relevant gadget or menulist is freed 1st.

There are many powerful commands to manipulate shapes, including rotation and scaling.

Sprites
Sprites are initialised by either loading them from disk or converting a shape object to a
sprite object using GetaSprite. The shape object can be freed once it has been converted to
a sprite.

Free Sprite n ;will free a sprite

Sprites can currently only be used in Blitz mode however in Amiga mode, the pointer can
be assigned to a single sprite object.

Slices
A slice is used to configure a display in Blitz mode. They are initialised with Slice command.

Unlike other objects, single slices cannot be freed. FreeSlices is used to free all slices
currently initialised.

The commands Show, ShowF, ShowB and ShowSprite all use the currently use slice.

The RGB command also affects the colour registers in the currently used slice as does the
Use Palette command.

Files
Unlike other Blitz objects files are opened and closed rather than initialised & killed.

Files are initialised with OpenFile(), ReadFile() and WriteFile() functions. Unlike other Blitz
objects a function is used so the program can tell if file was opened.

CloseFile n command is used to ‘free’ a file object. The command Free File n may also be
used, unlike other objects it is best to close all files yourself rather than rely on Blitz2 to
close them when the program exits.

A file is of course an input/output object, the commands FileInput and FileOutput are used
to direct input and output to files.

Get, Put, ReadMem and WriteMem require file# parameters and so do not require the use
of FileInput and FileOutput commands.

Page 52

Objects Summary
Blitz2’s objects are custom data structures used by the libraries to handle a whole
assortment of entities. Blitz2 manages the memory required of these structures, freeing
them automatically when a program ends.

They provide a simple interface to many of the more complex Blitz2 commands. Parameter
passing is minimised as many of the commands take advantage of the currently used
object.

As libraries are upgraded and added to Blitz2, more objects will be added and versatility
and functionality of existing objects will be increased.

Page 53

7. BLITZ MODE

Although the Amiga’s operating system is very powerful, its ability to take full advantage of
the graphics capacity of the machine is limited. Blitz mode is for programmers wanting to
produce smooth animated graphics for games and the like.

The command Blitz puts your program in Blitz mode. When this happens the operating
system is disabled and your program takes over the whole machine. This means that it will
not multi-task and file access is no longer possible.

The benefits of Blitz mode are that programs run a lot quicker and display options such as
smooth scrolling and dual-playfield are possible. Blitz mode is not a permanent state.
When your program re-enters Amiga mode or exits, the operating system is brought back
to life as though nothing happened.

Careful attention must be paid regarding entering Blitz mode as version 1.3 and older of
the operating system can take up to 2 seconds to flush any buffers after a file is closed. You
should always ensure that absolutely no disk or file access is taking place before entering
Blitz mode. At the time of this writing, no software method of achieving this has yet been
discovered. The best we can suggest is that a VWAIT 100 should always be executed
before using Blitz mode.

Slice Magic
The designers of the Amiga hardware have implemented many features for achieving
smooth, fast graphics. After entering Blitz mode the display is controlled using Slices.
Slices are much more flexible than the operating system's screens, they allow features
such as smooth scrolling, double buffered displays and much more.

The ability to have more than one slice means that the display can be split into different
regions each with their own resolution.

The following is a description of the main display features accessible with slices:

Smooth Scrolling
This is achieved by displaying only a portion of a large bitmap. The Amiga hardware
enables us to move the display window around the inside of a large bitmap as the following
diagram shows:

Page 54

DISPLAY

BITMAP

The display window represents what is shown on the monitor, as we move the display
window across the bitmap to the right the image we see on the screen scrolls smoothly to
the left.

The Blitz commands Show, ShowF and ShowB allow us to set the position of the display
window inside the bitmap.

The above diagram limits the amount we can scroll to the size of the bitmap. By duplicating
the left portion of the bitmap on the right we can smoothly scroll the display across. When
it reaches the right, reset it back to the far left. As there is no change when the display is
reset to the left the illusion of continuous scrolling is created.

The above left right scenario also applies to vertical scrolling (up and down).

Dual-Playfield
In some situations, the display will be made up of a background and a foreground. The
Amiga has the ability to display one bitmap on top of the other called dual-playfield mode
to achieve this effect.

In a dual playfield display, two 8 colour bitmaps can be displayed, one in front of the other
and any pixels set to colour zero in the front playfield will be transparent letting the back
playfield show through. Each playfield can have its own colours.

Page 55

BMAP0 BMAP1 BMAP0 on BMAP1

Copper Control
Smooth animation is achieved by moving graphics in sync with the video display. The
display is created by a video beam that redraws the screen line by line every 50th of a
second. Often, it's useful to sync things to the vertical position of the vertical beam. This is
achieved using the Amiga graphics co-processor known as the Copper.

Blitz2 offers several ways of taking advantage of the copper hardware. The most popular is
to change the colour of the background colour to produce rainbow type effects on the
display. This is achieved using the ColSplit command.

Those with good knowledge of Amiga hardware may wish to program copper to make other
changes at different vertical places, this can be achieved using CustomCop.

The Blitter
The Amiga has custom hardware specifically to transfer graphic images onto bitmaps
known as the blitter. Blitz2 offers several ways of blitting shapes onto a bitmap and a
special Scroll command to shift areas of a bitmap around, also using the blitter.

The following is a brief overview of the various blitter based commands in Blitz2:

Blit Put shapes onto bitmaps.

QBlit Same as Blit but Blitz2 remembers where the shape was put and will erase it
when it's time to move the shape somewhere else on the bitmap.

BBlit Same as QBlit but when it is time to move the shape, instead of erasing the
shape, Blitz2 replaces what was on the bitmap previous to the BBlit.

SBlit Sames as Blit but with a stencil feature which protects certain areas of the
bitmap from being blitted on.

Block Fast version of Blit that works only with rectangular shapes a multiple of 16
pixels wide.

ClipBlit Slow version of Blit which will clip the shape to fit inside the bitmap.

Scroll Used to copy sections of a bitmap from one position to another.

QAmiga Mode
It's also possible to jump out of Blitz mode and back into Amiga mode. This can be done
using either the QAmiga or Amiga statement.

Using Amiga to go back into Amiga mode will fully return you to the Amiga's normal display,
complete with mouse pointer.

Using QAmiga will return you to Amiga mode, but will not affect the display at all. This
allows Blitz mode programs to jump into Amiga mode for operations such as file I/O, then
jump back to Blitz mode without having to destroy Blitz mode display.

Page 56

An Important note!!!!!

You should always ensure that absolutely no disk or file access is taking place before
entering Blitz mode. At the time of this writing, no software method of achieving this has
yet been discovered.

By following these guidelines using Blitz mode should be pretty safe:

• Always wait for the floppy drive light to go out if you have saved some source code before
Compiling/Running a program which launches straight into Blitz mode.

• A590 hard drive users - always wait for the second blink of the drive light when using
Workbench 1.3. Workbench 2.0 users have their buffers flushed in one go.

• If you use the QAmiga statement for the purpose of writing data to disk, its a good idea to
execute a delay before go back to Blitz mode - in effect, simulating the above. Executing
a VWait 250 will provide a delay of about 5 seconds - a safe delay to use. After reading
data use a VWait 50. Another important thing to remember about Blitz mode is that any
commands requiring the presence of the OS become unavailable while you're in Blitz
mode. If you attempt to open a window in Blitz mode, you will be greeted with an ‘Only
available in Amiga Mode' error at compile time. For this reason, the Reference Guide
clearly states which commands are available in which mode.

The Blitz, Amiga, and QAmiga statements are all compiler directives. This means they must
appear in the applicable order in your source code.

Summary
Blitz2 provides two environments for your programs to execute in. Amiga mode should be
used for any applications software and whenever your game needs to load data from disk.
Blitz mode is for programs that need to take advantage of the special display modes we
have provided in Blitz2. These provide performance that is just not available in Amiga
mode but will halt the Amiga's operating system.

To conclude, the only time it is acceptable to close down the Amiga's multi-tasking
environment is when the software is dedicated to entertainment. Any applications software
that uses Blitz mode will NOT be welcomed by the Amiga community.

Page 57

8. ADVANCED TOPICS

Resident Files
To make writing programs which manipulate large number of NewTypes, macros or
constants easier, Blitz2 includes a feature known as resident files.

A resident file contains a pre-compiled list of NewTypes, macros and constants. By creating
resident files, all these definitions can be dropped from the main code making it smaller
and faster to compile.

To create a resident file you will need a program which contains all the NewTypes. macros
and constants you want to convert to resident file format.

The following is an example of a such a program:

NEWTYPE .test
 a.l
 b.w
End NEWTYPE

Macro mac
 NPrint "Hello"
End Macro

xconst=10

To convert these definitions to a resident file, all you need to do is COMPILE & RUN the
program, then select CREATE RESIDENT from the COMPILER menu. At this point, you will
be presented with a file requester into which you enter the name of the resident file you
wish to create. That's all there is to creating a resident file!

Once created, a resident file may be installed in any program simply by entering the name
of the resident file into one of the 'RESIDENT' fields of the compiler options requester.
Once this is done, all NewType, macro and constant definitions contained in the resident
file will automatically be available.

Resident file AMIGALIBS.RES contains all the structures, constants and macros associated
with the Amiga OS. Those familiar with programming the OS will not have to include all the
usual library header files and will save minutes every compile time.

Operating System Calls
Much effort has been made to let the Blitz2 programmer make the most of the Amiga's
powerful operating system.

Page 58

Calling Operating System Libraries
Often the programmer with a good knowledge of the OS will want to access routines that
have not been supported by the internal Blitz2 command set. All routines in the Exec,
Intuition, DOS and Graphics libraries are accessible from Blitz2.

Support for other Amiga standard libraries is available by purchasing the Blitz2 advanced
programmers pack from Acid Software.

The following is an example of call routines in Amiga ROMs graphics & intuition libraries:

FindScreen 0 ;use Workbench screen
;open gimmezerozero window

Window 0,0,10,320,180,$408,””,1,2
rp.l=RastPort(0) ;get rastport for window
win.l=Peek.l(Addr Window(0)) ;find window structure

DrawEllipse_ rp,100,100,-50,50 ;graphics library
MoveWindow_ win,8,0 ;intuition library
BitMap 1,320,200,2 ;setup work bitmap
Circlef 160,100,100,1 ;draw something

;then transfer it to window

BltBitMapRastPort_ Addr BitMap(1),0,0,rp,0,0,100,100,$c0

WaitEvent

The final command BltBitMapRastPort_ is very useful for transferring graphics drawn with
the faster bitmap based Blitz2 commands onto a Window. This is a very system friendly
way of achieving this objective.

Page 59

Accessing Operating System Structures
With the file AMIGALIBS.RES resident (see the start of this chapter) even more control of
the OS is possible. The following is an example of accessing OS structures.

;variable *exec points to the ExecBase struct
;variable *mylist points to a List type
;variable *mynode points to a system node

*exec.ExecBase=Peek.l(4)
*mylist.List=*exec\LibList
*mynode.Node=*mylist\lh_Head

While *mvnode\ln_Succ
 a$=Peek$(*mynode\ln_Name) ;print node name
 NPrint a$
 *mvnode=*mvnode\ln_Succ ;go to next node
Wend

MouseWait

The use of the asterisk in *variablename.type means that instead of Blitz2 creating a
variable of a certain type it actually just creates a ‘pointer' to that type. The type (structure)
can then be accessed just like it was an internal Blitz2 variable.

The command Peek$ is an excellent way of retrieving text from OS structures as it reads
memory directly into a Blitz2 string variable until it hits a null (Chr$(0)).

Locating Variables and Labels in Memory
The ampersand (&) character can be used to find the address of a variable in the Amiga's
memory. For example:

; An example of using ‘&’ to find the address of a var.

Var.l=5
Poke.l &Var,10
NPrint Var
MouseWait

This is similar to the VarPtr function supplied in other BASICs.

When asking for the address of a string variable, the returned value will point to the first
character of the string. The length of the string is a 4 byte value, located at the address-4.

Page 60

The ‘?’ character can be used to find the address of a program label in the Amiga’s
memory. For example:

;An example of finding the address of a program label

MOVE #10,There ;wo! assembly code on this line
NPrint Peek.w(?There)
MouseWait
End

There:
Dc.w 0 ;wo! and again here

These features are really only of use to programmers with some assembly language
experience who need unconventional means for their ends.

Constants
A constant, in BASIC programming terms, is a value which does not change throughout the
execution of a program. The 5 in a=5 is a constant.

A hash sign (#) before a variable name means that it is a constant (no longer a variable!)
and cannot change in value when the program is running. The following line means that
#width is a constant and will always be 320:

#width=320

Constants have the following properties:

• Are faster than variables and do not require any memory

• Make programs more readable than using numbers

• Can be used in assembler

• Can be used with conditional compiling evaluations

• Can only hold integer values

• Make it easier to change a constant amount used throughout a program

• Can be altered through the source at compile time but NOT at runtime

The most important aspect of constants from a BASIC programmers point of view is that
any ‘magic numbers' that appear throughout their code can be replaced by meaningful
words such as #width.

If the program ever has to be modified to work with a new width, instead of going through
all the source changing any mention of the number 320, the programmer can just change
the constant equate at the top of the program #width=320 to #width=640 etc.

Page 61

Conditional Compiling
Allows the programmer to switch the compiler on and off as it reads through the source
code, controlling which parts of the program are compiled and which are not. Conditional
compiling is useful for producing different versions of the same software without using 2
different source codes. It can also be used to cripple a demo version of the software or
produce different programs for different hardware configurations.

Tracking down bugs can also involve the use of conditional compiling, by turning off any
unnecessary parts of code it becomes easier to pinpoint where exactly the error is
occurring. However, we hope the Blitz2 debugger will make this practice obsolete.

The conditional compiler directives are as follows:

CNIF Compiler on if numeric comparison is true, off otherwise

CSIF Compiler on if string comparison is true, off otherwise

CELSE Switch compiler from previous state on=>off off=>on

CEND End of conditional block (restores previous state)

The compiler has an internal on/off switch, after a CNIF or CSIF comparison the compiler
switches on for true, off for false. A CELSE will toggle the compiler switch and the CEND will
restore the on/off state to that of the previous CNIF/CSIF.

CNIF/CEND blocks can be nested.

It's important remember that CNIF directive only works with constant parameters – for
example, ‘5’, ‘#test’ - and not with variables. This is because Blitz2 must be able to
evaluate the comparison when it is actually compiling, and variables are not determined
until a program is actually run.

The following code illustrates using conditional compiling:

#crippled=1 ;is a crippled version
NPrint “Goo Goo Software (c)1993”
CNIF #crippled=1
 NPrint “DEMONSTRATION VERSION”
CELSE
 NPrint “REGISTERED VERSION”
CEND

; and later on in the program...

.SaveRoutine
CNIF #crippled=0 ;only if not crippled

;do save routine

CEND
Return

Page 62

The benefit over using a straight If crippled=0...EndIf is that the crippled version of the
above code will not contain the save routine in the object code so that there is no way it can
be uncrippled by hackers.

Conditional compiler directives come into their own when doing macro programming.

Macros
This is a feature usually only found in assemblers or lower level programming languages.
They are used to save typing, to replace simple procedures with faster ‘inline' versions, or
at their most powerful to generate code that would be impractical to represent with normal
code.

A macro is defined in a Macro name...End Macro structure. The code between these two
commands is not compiled but placed in the compiler's memory. When the compiler
reaches a !macroname it then inserts the code defined in the macro at this point of the
source code.

The following code:

Macro mymacro
 a=a+1
 NPrint “Good Luck”
End Macro

NPrint “Silly Example v1.0”
!mymacro
!mymacro
MouseWait

is expanded internally by the the compiler to read:

NPrint “Silly Example v1.0”
a=a+1
NPrint “Good Luck”
a=a+1
NPrint “Good Luck”
MouseWait

Macro Parameters
To make things a little more useful, parameters can be passed in a macro call using braces,
{ and }. These parameters are firstly inserted into the macro text, then the macro text is
inserted into the main code.

When a macro is defined the use of the back apostrophe (above TAB key on Amiga) before
a digit or letter (1-9, a-z) marks the point where a parameter will be inserted.

Page 63

The following illustrates passing two parameters to a macro:

Macro distance
 Sqr(‘1 *’1 +’2*’2)
End Macro

NPrint !distance{20,30}

MouseWait

the compiler expands the NPrint line to read:

NPrint Sqr(20*20+30*30)

replacing every ‘1 with the first parameter and ‘2 with the second etc.

If there are more than 9 parameters, letters are used; a signifying the tenth parameter, b
the eleventh and so-on.

Parameters can be anything, the {20,30} could just as easily been {x,y} in the previous
example.

Note: when passing complex expressions as parameters care should be taken to make
sure parenthesis are correct:

!distance{x*10+20,(y*10+20)}

will expand to

Sqr(x*10+20*x*10+20+(y*10+20)*(y*10+20)}

The above does not expand correctly for the first half. Due to the parenthesis around the
second parameter the second half does expand properly.

The ‘O Parameter
This parameter is special as it returns the number of parameters passed to a macro. This is
useful for both checking to see that the correct number of parameters was passed as well
as generating macros that can handle different numbers of parameters. The following
checks to see if two parameters were passed and generates a compile time error if not:

Macro Vadd
CNIF ‘0=2
 ‘1=’1+’2
CELSE
 CERR “Illegal number of ‘!Vadd’ Parameters”
CEND
End Macro
!Vadd{a}

Page 64

If you compile & run this program, you will see that it generates an appropriate error
message when !Vadd{a} is encountered. The CERR compiler directive is a special directive
used to generate a custom error message when a program is compiled.

Recursive Macros
Macros are recursive and can call themselves, the following macro prints the first
parameter and then calls itself, minus the first parameter, effectively stepping through the
list of parameters passed until a null character (no parameter) reached.

Macro dolist ;list upto 16 variables
 NPrint ‘1
 CSIF “’2”>””
 !dolist {‘2,’3,’4,’5,’6,’7,’8,’9,’a,’b,’c,’d,’e,’f,’g}
 CEND
End Macro
!dolist {a,b,c,d,e,f,g,h,i}
MouseWait

Replacing Functions with Macros
Macros are an excellent replacement for functions that don’t use any local variables but
need to generate more than one return variable. The following macro project takes x, y, z
coordinates and projects them onto a 2D x,y plane. It can then be used to generate x,y
projections for drawing.

Macro project #xm+’1*9-’2*6,#ym+’1*3+’2*1-’3*7 :End Macro

#xm=320:#ym=256

Screen 0,28:ScreensBitMap 0,0

For z=-1 5 To 15
 For y=-15 To 15
 For x=-15 To 15
 Circlef !project{x,y,z},3,x&y&z
 Next
 Next
Next

MouseWait

Page 65

The CMake Character
A special character known as the cmake character can be used to evaluate constant
expressions and insert the literal result into your code. This can be very useful for
generating label and variable names when a combination of macro parameters and
constant settings are needed to generate the right label.

varR=20
varB=30

Macro Ivar
 NPrint var~’1~
End Macro

!Ivar(2+1)

MouseWait

The above example without the cmake characters~ would print 21 as Blitz would expand
the code after NPrint to read var2+1, instead it evaluates the expression between cmake
characters and generates 3 which it then inserts into the macro text.

Inline Assembler
It's possible to include 68000 machine code inside Blitz2 programs using the inline
assembler. This offers the experienced programmer a way of speeding up their programs
by replacing certain routines with faster machine code equivalents.

There are three methods of including assembler in Blitz2:

• Inline using the GetReg and PutReg commands to access variables

• Inside statements and functions

• Developing custom Blitz2 libraries

GetReg & PutReg
These commands allow an assembly programmer access to the BASIC variables in the
program. The following listing illustrates their use:

a.w=5 ;use words
b.w=10
GetReg D0,a ;value of a=>D0
GetReg D1,b ;value of b=>D1
MULU D0,D1
PutReg D1,c.w ; value of D1=>c
NPrint c
MouseWait

Page 66

The next example inverts first bitplane of bitmap 0. Note how any complex expression can
be used after a GetReg command. Because GetReg can only use data registers, we place
the location of the bitmap structure in D0 and then move it to A0.

Screen 0,3
ScreensBitMap 0,0

While Joyb(0)=0
 VWait 15
 Gosub inverse
Wend

End

inverse: ;memory location of bitmap struct=>D0
 GetReg D0,Addr BitMap(0)
 MOVE.l D0,A0
 MOVEM (A0),D0-D1
 MULU D0,D1
 LSR 1#2,D1
 SUBQ #1,D1
 MOVE.l d(A0),A0
loop:
 NOT.l (A0)+
 DBRA D1,loop
Return

Page 67

Using Assembler with Procedures
A more efficient method of using assembler in Blitz2 is to put machine code routines inside
functions and statements. Parameters are automatically placed in D0-D5 and if using
functions, the value in register D0 will be returned to the calling routine.

The following listing illustrates the use of assembler in the statement qplot{} which sets a
pixel on the first bitplane of the bitmap supplied.

Note how more than one assembly instruction can be used per line of source code.

Statement qplot{bmap.l,x.w,y.w}
 MOVE.l D0,A0:MULU (A0),D2
 MOVE.l d(A0),A0:ADD.l D2,A0
 MOVE D1,D2:LSR#3,D2:ADD D2,A0:BSET.b D1,(A0)
 AsmExit
End Statement

Screen 0,1.0000000000000000
ScreensBitMap 0,0
bp.l=Addr BitMap(0)

For y.w=0 To 199
 For x.w=0 To 319
 qplot{bp,x,y}
 Next
Next

MouseWait

Programmers wanting to develop their own libraries of machine code routines should
purchase the Blitz2 advanced programmer’s pack from Acid Software. Blitz2 contains a
powerful library system giving the experienced machine code programmer a highly
productive and powerful environment to develop advanced software.

Page 68

9. PROGRAMMING TECHNIQUE & OPTIMISING

Label and Variable Names
The following are rules to adhere to when using variable and label names in Blitz2.

• Names can be of any length

• They must start with a letter (a...z, A...Z) or an underscore

• Must only contain alphanumeric chars and underscores

• Must not start with the same letters as any Blitz2 command

Also, label and variable names in Blitz2 are always treated as case-sensitive, this means
that the variables myship and MyShip are entirely different.

Style
There are many variable and label naming approaches that can make programming much
easier. The following are a few guidelines that can help keep things in control as your
program grows in size and more and more variables and labels are in use. Consistency is
essential, if you use any of the following styles, stick to them.

By separating different groups of variables and labels with the following methods, names
can have added meaning.

• Full caps “NAME”, initial cap “Name” and lower case “name”

• Letters “l”, words “Loop” and double words “MainLoop”

• Initial underscore “_loop” and mid underscores “main_loop”

• Numeric suffixes such as “loop!”, ”loop2” etc.

Nomenclature is a personal thing and by sticking to a certain style with variable and label
names many debugging problems can be avoided. Using good names for everything can
make your program far more readable and will greatly aid in finding mistakes.

Common Naming Related Problems
The following is a summary of certain problems that can arise when variable and label
names become messy.

• Using the wrong variable name will often not flag an error. If it has not previously been
assigned, Blitz2 will create a new variable with a default value of zero. Avoiding a mix of
different naming styles will greatly reduce these mistakes.

• Forgetting variable names can slow program development. By using logical names and
keeping a list of your main variables on a scrap of paper next to your keyboard helps
keep things organised.

Page 69

• Using lengthy names can aid readability, however it will also increase incidents of typing
errors and slow development.

• Use of rude or obscene labels can make programming a little more enjoyable, however it
should be avoided if your source code will be read by others.

Remarks and Comments
Other BASICs use REM statement but Blitz2 uses the semicolon (;) character. Anything
after a semicolon on a line will be ignored by the compiler. This feature is used to
document programs.

Adding remarks, the programmer can document each routine in a program for future
reference. One of the main curses of programming is having to return to a section of code
developed earlier only to find you can not make head or tail of its logic.

Although it can seem a little tedious, adding accurate explanations of each routine as you
write it will save many headaches later.

A section of documentation at the top of programs is also useful. Version number,
copyright information, lists of bugs fixed and when as well as full descriptions of all main
variables should all be maintained at the top of your program.

Structured Programming Techniques
One main technique in developing structured programs is a method known as indenting.
Indenting means that instead of each line being flush with the left margin, spacing is
inserted at the start of the line to indent it across the page.

Indenting lines of code that are ‘nested' inside loops or other program flow structures
creates a useful aid in visualising the structure of your source code.

The Blitz2 editor has features for indenting code. Tab key is used to move cursor across the
page. By changing the tab setting in Ted, the default size of indents can be altered.

By highlighting a block of code, block tab and untab (Amiga [and Amiga]) will move the
whole block left or right. Shift cursor left will move the cursor to the same indent as the line
above.

Keeping Things Modular
There is nothing more valuable than good initial planning when it comes to developing
software. Breaking down your project into modular pieces before you start is a must to
avoid the creation of huge spaghetti nightmares.

After deciding on how each section of the program is going to function it is usually best to
start with the most difficult sections. Getting the hardest bits going first while the program
is small can save a lot of headaches in the long run.

Page 70

Time spent waiting for your program to compile & initialise compounds itself when you're
bug hunting or making small adjustments to certain sections of code. In these situations it
is usually best to remove the code from the main program, spend an hour writing a shell
that you can test it in and then set about making it bullet proof.

A few things to keep in mind when developing routines:

• Make sure it will handle all possible situations called for

• Convince yourself you are using the most efficient method

• Keep it modular; ie. the routine must return to where it was called

• Keep it well documented

• Include comments regarding global variables and arrays it uses

• Make sure it's bullet proof (won’t fall over with bad parameters)

• Indent nested code and limit lengths of lines to aid readability

Along the way...

Besides keeping routines well documented it's always a good idea keep a piece of paper
handy to write down notes on the important bits. Lists of variables that are common
between routines as well as things ‘to do' in unfinished routines should always be noted.

The ‘to do' list is always a good way of thinking out all problems in advance. Always keep in
mind what extra routines will be needed to implement the next one on the list.

One of the biggest mistakes a programmer can make is start a routine that needs all sorts
of other routines to function. By starting with the stand-alone/independent bits you can
make sure they are working. This keeps you well clear of the headaches caused where you
have just added 5 routines, tested none of them and are trying to find a bug which could be
located in any of them. Developing a modular approach to programming is definitely the
most effective way of finishing a piece of software.

Keeping Your Code Readable
This is next on the list of requirements that will aid in the completion of a piece of software.

The two main keys to readability are indenting nested code and keeping the amount of
code on one line to a minimum. The following is an illustration of indenting nested code:

If ReadFile(0,”phonebook.data”)
 Filelnput 0
 While Not Eof(0)
 If AddItem(people())
 For i=0 To #num-1
 \info[i]=Edit$(128)
 Next
 Endif

Page 71

 Wend
Endif

This method means that it’s easy to see at a glance what code is being executed inside
each structure. Using this method it's difficult to make a mistake like leaving out the
terminating EndIf or Wend as just by finding the line above at the same level of indentation
we can match up each Wend with its corresponding While etc.

Optimising Code
It’s always important to have a firm grasp on how much time is being taken by certain
routines to do certain things. The following are a few things to keep in mind when trying to
get the best performance from your Blitz2 programs.

Performance is most important with arcade type games where a sluggish program will
invariably destroy the playability of the game. However, it is also important in applications
and other types of software to keep things as efficient as possible.

Anything that makes user wait will detract from productivity of package in general.

Algorithms
The most important key to optimising different routines is the overall approach taken to
implementing them in first place. There will always be half a dozen ways of approaching a
problem giving half a dozen possible solutions. In programming, it is usually best to pick
the solution that will produce the result in the quickest time.

Loops
When looking for ways to optimise a routine the best place to start is to examine the loops
(For...Next, While...Wend etc.). Time it takes to perform the code inside a loop is multiplied
by number of times it loops. This may seem logical but often programmers will equate the
number of lines code in a routine to time taken to execute it.

For i=1 to 100
 NPrint "hello"
Next

Will take exactly the same amount of time as typing the following 100 times which will
equate to 300 lines of code!

For i=1 to 1
 NPrint "hello"
Next

Once one can visualise loops expanded out, the notion that if anything can be removed
from inside a loop to before or after the loop then DO IT!

Page 72

Look-Up Tables
Replacing numeric functions with look-up tables is an effective way of gaining excellent
speed increases. A look-up table or LUT for short, is an array that contains all the possible
solutions that the numeric function would be expected to provide.

The most common example of using LUTs for healthy speed increases is when using trig
functions such as Sine or Cosine. Instead of calling the Sin function, an array containing a
sine wave is created, the size of the array depends on the accuracy of the angle parameter
in your program.

If a was an integer variable containing an angle between 0 and 360 we could replace any
Sin functions such as x=Sin(a*130/pi) with x=sinlut(a) which will of course be more than 10
times as quick. Such an array would be setup in a program as follows:

Dim sinlut(360)
For i=0 To 360
 sinlut(i)=Sin(i*180/pi)
Next

Using Pointers
When doing many operations on a particular subfield in a NewType a temporary pointer
variable of the same subfield type can be created and that used instead of the larger (and
slower) path name:

UsePath a(i)\alien\pos

replaced by:

UsePath *a
*a.pos=a(i)\alien

Testing Performance
Often it's important test 2 different routines to see which offers the faster solution. The
easiest way is to call each of them 5000 times or so and time which is quicker.

When writing arcades that will be performing a main loop each frame, is useful to poke
background colour register before and after a specific routine to see how much of the
frame it is using.

The following will show how much of a frame it takes to clear a bitmap:

While Joyb(0)=0
 VWait
 Cls
 MOVE #$f00,$dff180 ;poke background colour red
Wend

Page 73

Different colours can be used for different parts of the main loop. Remember that at the top
of each slice the background colour will be reset.

Optimising Games
A quality arcade game should always run to a 50th, meaning the main loop always takes
less than a frame to execute and so animation etc. are changed every frame giving the
game that smooth professional feel.

This time frame means the programmer will often have to sacrifice certain elements in
their game and maybe reduce colours and size of shapes to get the main loop fast enough.

The following are several methods for optimising code main loops in games:

• Disable runtime errors in the compiler options when testing speed of code as the error
checker slows code dramatically.

• Poke the background colour register with different values between main routines to work
out which ones are taking too long:

MainLoop:
 VWait
 Gosub movealiens
 MOVE.w #$f00,$dff180 ;turn background red
 Gosub drawaliens
 MOVE.w #$f00,$dff180 ;turn background green

• Use QBlits as they are the fastest way of implementing animated graphics in Blitz2.

• If aliens change direction using complex routines, split aliens into groups and every
frame select a different group to have their directions changed, the others can move in
same direction until it's their turn. This method applies to any routines that don't have to
happen every frame but can be spread across several frames in tidy chunks.

• Decrease the size of the display. During a frame, the display slows down processor and
blitter. A smaller display increases amount of time given to processor and blitter.

Those with fast mem and faster processors should remember that most people don't have
either when testing speed of your code.

Page 74

10. PROGRAM EXAMPLES

Number Guessing
Following is a small program where computer guesses a random number and you have to
guess it in less than ten turns.

NPrint "I just picked a number from 0 to 100"
NPrint "I'll give you ten turns to guess it:"
a=Rnd(100)
n=1

Repeat
 Print "Attempt #",n," ?"
 b=Edit(10)
 If b=a Then NPrint "Lucky Guess":Goto finish
 If b<a Then NPrint "Too Small"
 If b>a Then NPrint "Too Large"
 n+1
Until n=11

NPrint "Out of turns!"

finish:
NPrint "Press mouse button to exit."

MouseWait

First , you'll find it pretty hard to guess the number, this is because the number Blitz
generates is not by default an integer and will hence include some fractional part.

Change the line a=Rnd(100) to either a.w=Rnd(100) or a=Int(Rnd(100)).

The .w suffix means the variable a is now a word type (an integer with range –
32768...32767). If you use the Int function in the second option, a is still a quick type but
the random number has its fractional part chopped. When you use variables in Blitz2
without a.type suffix they default to the quick type which is a number with range -
32768...32767 with 1/65536 accuracy. See the Variable Types section for a more in-depth
discussion of this topic.

If you want all the variables in the program to default to the integer word type (not quick)
then add the following line to the top of the program:

DEFTYPE .w ;all variables without suffix default to words

As with other BASICs once the variable is used once, its type is defined and future
references do not require the .type suffix.

Page 75

Unlike other BASICs the Print command does not move the cursor to a new line when
finished so the command NPrint is used for this.

The Edit() function is used instead of the older input command.

Also the semicolon is used instead of the REM command in Blitz2 and does not retain any
of its older functionality in Print statements.

Creating Stand-Alone Workbench Programs
The number guessing program can be made to run from Workbench with its own icon. Add
the following lines to the start of your code.

The text after the semicolons are known as remarks. As mentioned, the semicolon in Blitz2
replaces the old REMark command in older BASICs.

; Number Guessing Program
WBStartup ;necessary for program to be run from Workbench

FindScreen 0 ;get front most Intuition screen
Window 0,0,0,320,210,$1000,"Hello World",1,2

When you compile & execute the program now, the window replaces the default CLI for
input and output.

One thing that you should replace is the b=Edit(10) function to: b=Val(Edit$(10)) This gets
rid of default 0 character that appears in window form of Edit() function.

Ensure the Create Executable Icon option in the Compiler Options is set to ON.

Now, select Create Executable from compiler Menu or use the Amiga E shortcut.

Type the name of program you wish to create. You have now created your first stand alone
program with Blitz2, go to Workbench and click on new program's icon to test it.

A Graphic Example
The following program opens its own screen and draws what is known as a rosette, a
pattern where lines are connected between all the points around a circle.

;rosette example
n=20

NEWTYPE .pt
 x.w:y
End NEWTYPE

Dim p.pt(n)

For i=0 To n-1
 p(i)\x=320+Sin(2*i*Pi/n)*319

Page 76

 p(i)\y=256+Cos(2*i*Pi/n)*255
Next

Screen 0,25 , hires 1 colour interlace screen
ScreensBitMap 0,0

For i1=0 To n-2
 For i2=i1+1 To n-1
 Line p(i1)\x,p(i1)\y,p(i2)\-x,p(i2)\y,1
 Next
Next

MouseWait

The NewType .pt defined in the program has two items or fields x & y. This means that
instead of dimming an array of x.w(n) and y.w(n) we can dim one array of p.pt(n) which can
hold the same information.

The backslash "\" character is used to access the separate fields of the NEWTYPE . The first
For...Next loop assigns the points of a circle into the array of points.

The ScreensBitMap command allows us to draw directly onto screen with Plot, Line, Box
and Circle commands. Programs that use windows should not use this method, rather they
should draw into specific windows using WPlot, WLine WBox & Wcircle.

Using Menus and the Blitz2 File Requester
The following program opens its own screen & window, attaches a menu list, and
depending what user selects from menus, either opens a Blitz file requester or exits.

; A Simple File Requester example
Screen 0,11,"Select A Menu" ;open our own intuition screen
MenuTitle 0,0,"Project" ;setup a menu list
Menultem 0,0,0,0,"Load ","L"
Menultem 0,0,0,1,"Save ","S"
Menultem 0,0,0,2,"Quit ","Q"
MaxLen path$=192 ;must be called before a file requester is used
MaxLen name$=192

;Set up a BACKDROP (ie - invisible) window
Window 0,0,0,320,200,$1900,"",1,2

WLocate 0,20 ;move cursor to top left of window
SetMenu 0 ;attach our menu list to our window

Repeat
 Select WaitEvent
 Case 256 ;it’s a menu event!
 Select ItemHit
 Case 0 ;load, its item 0 which means load

Page 77

 p$=FileRequest$("FileToLoad",path$, name$)
 NPrint "Attempted to Load ",p$
 Case 1 ;save, it’s item 1 which means save
 p$=FileRequest$("FileToSave",path$, name$)
 NPrint "Attempted to Save ",p$
 Case 2 ;it’s item 2 which means quit
 End
 End Select
 End Select
Forever

MaxLen command is used to allocate a certain amount of memory for a string variable in
Blitz2. This is necessary so that the two string variables required by the file requester
command are large enough for the job.

Menus created by the MenuTitle and Menultem commands are attached to the Window
using the SetMenu command.

The Select...Case...End Select structures are the best way of handling information coming
from a user. When the user selects a menu, closes a window or clicks on a gadget an
‘event' is sent to the program. Usually an application program will use WaitEvent which
makes program sleep until the user does something. When multitasking, a program that is
asleep will not slow down the execution of other programs running.

Once an event is received, the event code returned by WaitEvent specifies what type of an
event occurred. For example, a menu event returns 256 ($100 hex) and a close window
event returns 512 ($200 hex).

String Gadgets
The following program demonstrates the use of string gadgets. These allow the user to
enter text via the keyboard via three string gadgets for decimal, hex and binary I/O.

When the user types a number into one of the gadgets and hits return, the program
receives a gadgetup event. The GadgetHit function returns which gadget caused the event.
The program then converts the number the user typed into other number systems
(decimal, hex or binary) and displays the results in each of the string gadgets.

The ActivateString command means the user does not need to click on the gadget to
reactivate it so that they can type in another number.

;decimal hex binary converter
FindScreen 0
StringGadget 0,64,12,0,0,18,144
StringGadget 0,64,26,0,1,18,144
StringGadget 0,64,40,0,2,18,144

Window 0,100,50,220,56,$1008,"BASE CONVERTER",1,2,0
WLocate 2,04:Print "DECIMAL"
WLocate 2,18:Print " HEX$"

Page 78

WLocate 2,32:Print "BINARY%"
DEFTYPE.l value

Repeat
 ev.l=WaitEvent
 If ev=$40 ;gadget up
 Select GadgetHit
 Case 0
 value=Val(StringText$(0,0))
 Case 1
 r$=UCase$(StringText$(0,1))
 value=0:i=Len(r$):b=1
 While i>0
 a=Asc(Mid$(r$,i,1))
 If a>65 Then a-55 Else a-48
 value=a*b
 i-1:b*16
 Wend
 Case 2
 r$=StringText$(0,2)
 value=0:i=Len(r$) b=1
 While i>0
 a=Asc(Mid$(r$,i,1))-48
 value+a*b i-1 : b*2
 Wend
 End Select

 ActivateString 0,GadgetHit
 SetString 0,0,Str$(value)
 SetString 0,1,Right$(Hex$(value),4)
 SetString 0,2,Right$(Bin$(value),16)
 Redraw 0,0:Redraw 0,1:Redraw 0,2

 Endif
Until ev=$200

Prop Gadgets
The following program creates a simple RGB palette requester allowing user to adjust the
colours of the screen. PropGadgets can be thought of as sliders. In this example we create
three vertical PropGadgets to represent the Red, Green and Blue components of the
current colour register selected.

The 32 colour registers are represented with 32 text gadgets. The gadget's colour is set by
changing GadgetPens before the gadget is added to the gadget list. Using GadgetJam 1 the
two spaces are shown as a block of colour.

; simple palette requester
FindScreen 0

Page 79

For p=0 To 2
 PropGadget 0,p*22+8,14,128,p,16,54
Next

For c=0 To 31 GadgetJam 1 : GadgetPens 0,c
 x=c AND 7:y=lnt(c/8)
 TextGadget 0,x*28+72,14+y*14,32,3+c," " ;<-2 spaces
Next

Window 0,100,50,300,72,$100A,"PALETTE REQUESTER",1,2,0
cc=0:Toggle 0,3+cc,0n:Redraw 0,3+cc

Repeat
 SetVProp 0,0,1-Red(cc)/15,1/16
 SetVProp 0,1,1 -Green(cc)/15,1/16
 SetVProp 0,2,1 -Blue(cc)/15,1/16

 Redraw 0,0:Redraw 0,1 :Redraw 0,2
 ev.l=WaitEvent

 If ev=$40 AND GadgetHit>2
 Toggle 0,3+cc,0n:Redraw 0,3+cc
 cc=GadgetHit-3
 Toggle 0,3+cc,0n:Redraw 0,3+cc
 Endif

 If (ev=$20 OR ev=$40) AND GadgetHit<3
 r.b=VPropPot(0,0)*16
 g.b=VPropPot(0,1)*16
 b.b=VPropPot(0,2)*16
 RGB cc,15-r,15-g,15-b
Endif

Until ev=$200

Database Type Application
The following listing is a simple data base program to hold a list of names, phone numbers
and addresses.

The user interface can either be typed in as listed or created using the Intuition Tools
tutorial later in this manual.

If a text file exists called phonebook.data we read it into a list. Each item of the list has
been set up to hold 4 strings using the NewType person. Using a list instead of a normal
array means that we think of each record inside the list as connected to the one before and
the one after rather than just being an individual item. Blitz2 keeps an internal pointer to
the current item and the various list commands enable us to change that internal pointer
and operate on the item it points to.

Page 80

Phone Book Program

FindScreen 0
;the following is from ram:t as created in the intuition tools tutorial
Borders On:BorderPens 1,2:Borders 4,2
StringGadget 0,72,12,0,1,40,239
StringGadget 0,72,27,0,2,40,239
StringGadget 0,72,43,0,3,40,239
StringGadget 0,72,59,0,4,40,239
GadgetJam 0:GadgetPens 1,0
TextGadget 0,8,75,0,10,"NEW ENTRY"
TextGadget 0,97,75,0,11,”-1 <"
TextGadget 0,129,75,0,12, "<<"
TextGadget 0,161,75,0,13, ">>"
TextGadget 0,193,75,0,14,">1 "
TextGadget 0,226,75,0,15,"DIAL"
TextGadget 0,270,75,0,16,"LABEL"
SizeLimits 32,32,-1,-1

Window 0,0,24,331,91,$100E,"MY PHONE BOOK",1,2,0
WLocate 2,19:WJam 0:WColour 1,0:Print "Address"
WLocate 19,50:Print "Phone"
WLocate 27,3:Print "Name"
; and now we start typing...
#num=4 ;4 strings for each person

NEWTYPE .person
 info$[#num]
End NEWTYPE

Dim List people.person(200)
USEPATH people()
; read in names etc from sequential file

If ReadFile(0, "phonebook.data")
 Filelnput 0
 While NOT Eof(0)
 If AddItem(people())
 For i=0 To #num-1 :\info[i]=Edit$(128):Next
 Endif
 Wend
Endif

ResetList people()
;if empty add blank record
If NOT NextItem(people()) Then AddItem people()
refresh:
ref=0

For i=0 To #num-1
 SetString 0,i+1,\info[i]:Redraw 0,i+1

Page 81

Next

ActivateString 0,1 :VWait 5
Repeat
 ev.l=WaitEvent

 If ev=$200 ;close window event
 Gosub update
 If WriteFile(0,"phonebook.data");save data to file
 FileOutput 0
 ResetList people()
 While NextItem(people())
 For i=0 To #num-1 :NPrint \info[i]:Next
 Wend
 CloseFile 0
 Endif
 Endif

 If ev=64
 If GadgetHit=#num Then ActivateString 0,1
 If GadgetHit<#num Then ActivateString 0,GadgetHit+1
 Select GadgetHit
 Case 10
 Gosub update:If AddItem(people()) Then ref=1
 Case 11
 Gosub update:If FirstItem(people()) Then ref=1
 Case 12
 Gosub update:If PrevItem(people()) Then ref=1
 Case 13
 Gosub update:If NextItem(people()) Then ref=1
 Case 14
 Gosub update:If LastItem(people()) Then ref=1
 End Select
 Endif
Until ref=1

Goto refresh
Update:
For i=0 To #num-1 : \info[i]=StringText$(0,i+1) : Next : Return

List Processor for Exec Based Lists
Following is an example of accessing OS structures. Before entering this program you will
need to add the AmigaLibs.res file to the Blitz 2 environment. To do this open the Compiler
Options requester from the Compiler Menu. Click in the Residents box and type in
amigalibs.res.

By selecting ViewTypes from the compiler menu the entire set of structs should be listed
that are used by the Amiga's operating system.

Page 82

The first line of our program defines the variable exec as a pointer to type ExecBase. As the
Amiga keeps the location of this variable in memory location 4 we can use the Peek.l (long)
command to read the 4 byte value from memory into our pointer variable.

Blitz2 now knows that exec points to an execbase structure and using the backslash
character we can access any of the variables in this structure by name.

If you select ViewTypes from the compiler menu and type in ExecBase (case sensitive) you
can view all the variables in the execbase structure.

We then define another pointer type called *mylist.List. We can then use this to point to any
List found in execbase such as LibList or DeviceList.

An exec list consists of a header node and a series of link nodes that hold the list of devices
or libraries etc.

We point mynode at the lists first link node in the third line of code.

The next line loops through the link nodes until the node's successor=0 which means we
have arrived back at the header node.

Peek$ reads ASCII data from memory until a zero is found, this is useful for placing text
pointed to by a C definition such as *In_Name.b into Blitz 2's string work area.

We then point mynode at the next node in the list.

Exec List Processor

*exec.ExecBase=Peek.l(4)
*mylist.List=*exec\LibList
*mynode.Node=*mylist\lh_Head

While *mynode\ln_Succ
 a$=Peek$(*mynode\1n_Name)
 NPrint a$
 Amynode=*mynode\ln Succ
Wend

MouseWait

Prime Number Generator
Following program generates a list of prime numbers from 2 to a limit specified by user. A
list of all the prime numbers found is kept in a Blitz 2 List structure.

We begin by inputting the upper limit from the user using the default input output and the
edit() command, the numeric form of the edit$() command.

Page 83

A While...Wend structure is used to loop through the main algorithm until upper limit is
reached. The algorithm simply takes next integer, loops through the list of prime numbers
it has already generated until either finds a divisible number or it is too far through the list
(item in list is greater than square root of number being checked).

If the algorithm does not find a divisor in its search through the list it prints the new prime
and adds it to the end of the list.

Print "Primes to what value " ;find out limit to run program to
v=Edit(80) ;input numeric
If v=0 Then End ;if O then don't carry on
tab.w=0 : tot.w=0 ;reset counters
Dim List primes(v) ;dim a list to hold primes
p=2 ;add the number2 to our list
AddItem primes()
primes()=p

While p<v ;loop until limit reached
 p+1 ;increment p
 flag=1 ;set flag
 d=0
 q=Sqr(p) ; set search limit
 ResetList primes() ;loop through list

 While NextItem(primes()) AND d<q AND flag
 d=primes()
 flag=p MOD d
 Wend

 If flag<>0 ;if found print and add it to list
 Print p,Chr$(9) ;chr$(9) is a TAB character
 tab+1:tot+1
 If tab=10 Then NPrint "":tab=0
 AddLast primes()
 primes()=p
 Endif
Wend

NPrint Chr$(10)+"Found ",tot," Primes between 2 & ",v
NPrint "Left Mouse Button to Exit"

MouseWait

Clipped Blits
The Following program illustrates a method to clip blits. When a shape is blitted outside
the area of a bitmap an error occurs. To have shapes appear half inside a bitmap and half
outside we use a larger bitmap and position the display inside. The size of the outer frame
is dependent on the size of the shapes that will be drawn.

Page 84

In the following example we are using a 32x32 pixel shape so we need an extra 32 pixels
all round the bitmap. The Show 0,32,32 command centres the display inside the larger
bitmap. We also have to use the extended form of the slice command as we are displaying
a bitmap wider than the display.

The RectsHit(x,y,1,1,0,0,320+32,256+32) function returns true if the shape is inside the
larger bitmap and should be blitted. If the shape was larger or it had a centred handle the
parameters would need to be changed to accommodate these factors.

The makeshape routine creates a temporary bitmap to draw a pattern and then transfer it
to a shape object using the GetaShape command.

Blitz
Gosub makeshape
BitMap 0,320+64,256+64,3
Slice 0,44,320,256,$fff8,3,8,8,320+64,320+64
Show 0,32,32

While Joyb(0)=0
 x.w=Rnd(1024)-512
 y.w=Rnd(1024)-512
 If RectsHit(x,y,1,1,0,0,320+32,256+32)
 Blit 0,x,y
 Endif
Wend

.makeshape:
BitMap 1,32,32,3
For i=1 To 15:Circle 16,16,i,1 : Next
GetaShape 0,0,0,32,32
Free BitMap 1

Return

Dual Playfield Slice
The following program demonstrate use of a dual playfield display. As described in a
previous chapter dual playfield lets us display two bitmaps simultaneously using ShowF
and ShowB commands.

The macro rndpt simply inserts the code Rnd((i40),Rnd(512) into source each time it is
called. For instance Line !rndpt,!rndpt,Rnd(7) is expanded internally by compiler to:

Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(7)

Once again the extended from of the slice command has to be used with flags set to $fffa
giving us a lores dual playfield scrollable display.

Page 85

In dual playfield we can think of having two displays. The ShowF command positions the
front display inside BitMap 1, the ShowB command positions the backdrop display inside
BitMap 0. Note that we must pass the x position of the other display with ShowF and
ShowB so that Blitz2 can calculate internal variables properly.

Blitz
Macro rndpt Rnd(640),Rnd(512):End Macro
BitMap 0,640,512,3

For i=0 To 255
 Line !rndpt,!rndpt,Rnd(7)
Next

BitMap 1,640,512,3

For i=0 To 255
 Circlef!rndpt,Rnd(15),Rnd(7)
Next

Slice 0,44,320,256,$fffa,6,8,16,640,640

While Joyb(0)=0
 VWait
 x1=160+Sin(r)*160
 y1=128+Cos(r)*128
 x2=160-Sin(r)*160
 y2=128-Cos(r)4128
 ShowF 1,x1,y1,x2
 ShowB 0,x2,y2,x1
 r+.05
Wend

Double Buffering
The following code illustrates the use of a double buffered display which is necessary to
achieve smooth moving graphics. The trick with double buffering is that while one bitmap
is displayed we can change the other without any glitches happening on the display.

The VWait command waits for the vertical beam to be at the top of the display which is
when we are allowed to swap the bitmaps being displayed without getting any glitches.

The db=1-db equation will mean that db alternates between 0 & 1 each frame. We Show
db, toggle it (db=1-db) and then Use Bitmap db to achieve the "draw to one bitmap while
displaying the other" technique known as double buffering.

Because we have two bitmaps, we need two queues to use QBlit properly. QBlit works by
doing a normal Blit and storing the position of Blit in a queue. The UnQueue command will
erase all parts of the screen listed in the queue so we can draw the balls in their new
positions without leaving "trails" behind them from their old position.

Page 86

The move #-1,$dffl80 line pokes the background colour to white, this allows us to see how
much of the frame has been taken since VWait to execute the code. If we increase the
number of balls, the moving and drawing loop will take longer than a frame (50th of a
second) and the white will start flashing as the poke will only be happening every second
frame. See chapter 10 for more thorough discussion of frame rates etc.

The only other thing I'll mention is the bounce logic used when the ball moves outside the
bitmap. We reverse the direction but also add the new direction to the position so the
program never attempts to Blit the shape outside of the bitmap.

Blitz
n=25

NEWTYPE .ball
 x.w:y:xa:ya
End NEWTYPE

Dim List b.ball(n-1)

While AddItem(b())
 b()\x=Rnd(320-32),Rnd(256-32),Rnd(4)-2,Rnd(4)-2
Wend

Gosub getshape

BitMap 0,320,256,3
BitMap 1,320,256,3
Queue 0,n
Queue 1,n
Slice 0,44,3

While Joyb(0)=0
 VWait
 Show db
 db=1-db
 Use BitMap db
 UnQueue db
 ResetList b()
 USEPATH b()
 While NextItem(b())
 \x+\xa:\y+\ya
 If NOT RectsHit(\x,\y,1,1,0,0,320-32,256-32)
 \xa=-\xa:\ya=-\ya
 \x+\xa:\y+\ya
 Endif
 QBlit db,0,\x,\y
 Wend
 MOVE #-1,$dff180
Wend
End

Page 87

.getshape:
BitMap 1,32,32,3
For i=1 To 15 : Circle 16,16,i,1 : Next
GetaShape 0,0,0,32,32
Free BitMap 1
Return

Smooth Scrolling
This final example demonstrates smooth scrolling as discussed in a previous chapter.

Scroll commands are used to copy the left side of the bitmap to right and the top half of the
bitmap to bottom. This effect means large bitmap is the same in each quarter.

Because of this we can scroll display across the bitmap, and when hit the right edge reset
the display back to the left edge without any jump in display as both left and right sides of
the bitmap are the same. This is same for scrolling display down the bitmap.

To be able to access mouse moves we need the Mouse On command. We can then take
the amount the mouse has been moved by the user and add it to the speed in which we are
moving the display around the bitmap.

The QLimit(xa+MouseXSpeed,-20,20) command makes sure that the xa (x_add) variable
always stays inside the limits -20...20.

The x=QWrap(x+xa,0,320) command means that when the displays position inside the
bitmap reached the right edge of the bitmap it wraps around to the left.

Blitz
Mouse On
n=25
BitMap 0,640,512,3

For i=0 To 150
 Circlef Rnd(320-32)+16,Rnd(256-32)+16,Rnd(16),Rnd(8)
Next

Scroll 0,0,320,256,320,0
Scroll 0,0,640,256,0,256
Slice 0,44,320,256,$fff8,3,8,8,640,640

While Joyb(0)=0
 VWait
 Show db,x,y
 xa=QLimit(xa+MouseXSpeed,-20,20)
 ya=QLimit(ya+MouseYSpeed,-20,20)
 x=QWrap(x+xa,0,320)
 y=QWrap(y+ya,0,256)
Wend

Page 88

11. THE DISPLAY LIBRARY & AGA

Introduction
Display Library is a recent addition to Blitz. Developed as a replacement to Slices it not only
offers games programmers access to all of new AGA features but offers a slightly more
modular approach to controlling the Amiga's graphics hardware.

The Amiga's display is controlled by the copper. The copper is a secondary processor that
executes a list of instructions every frame. For those new to such concepts, the Amiga
redraws the screen 50 times a second and each redraw is known as a frame. The video
beam which sweeps across the screen drawing each pixel is controlled by certain hardware
registers, these registers are poked by the copper whose job it is to keep everything in
sync. A coplist contains information about colours, bitplanes, sprites, resolution and more
that the video beam requires to render a typical display.

Initialising
Unlike Slices which appear as soon as they are initialised the display library requires
coplists to be initialised (using InitCopList) prior to a display being created (using
CreateDisplay). The important difference here is that Slices require memory to be allocated
each time a change to the video display is required while the Display library allows multiple
CopLists to be initialised before any displays are created.

There are two forms of the InitCopList command. The short version simply requires the
CopList# which is to be initialised and the flags. The height of the display will default to
256 pixels high. A width of 320, 640 or 1280 will be used depending on the resolution set
in the flags as will the number of colours.

The longer version has the following format:
InitCopList CopList#,ypos,height,type,sprites,colours,customs

The ypos value is usually set to 44, the standard top of frame for a PAL display. If CopLIst is
to be used below another coplist on the same display ypos should be set to 2 scan lines
below the last CopLists bottom line.

Sprites should always be set to eight, even if they are not all available, colours should be
set to the number required. When using more than 32 colours ensure that the #agacolors
flag MUST be set.

Customs allocate enough room for advanced custom copper lists to be attached to each
display. See later on in this chapter for a discussion on using custom cops.

Page 89

Flags Used With InitCopList
The flags value is calculated by adding the following values together.

Note: Variables must be long (32 bits) when used as the flags parameter for the InitCoplist
command.

#onebitplane = $01
#twobitplanes = $02
#threebitDlanes = $03
#fourbitplanes = $04
#fivebitplanes = $05
#sixbitplanes = $06
#sevenbitplanes = $07*
#eightbitplanes = $08*
#smoothscrolling = $10 ;set if you will be scrolling the bitmap
#dualplavfield = $20 ;enable dual playfield mode
#extrahalfbrite = $40 ;forces 6 bitplane display into ehb mode
#ham = $80 ;display in ham
#lores = $000
#hires = $100
#superhires = $200
#loressprites = $400
#hiressprites = $800*
#superhiressprites = $c00
#fetchmode0 = $0000
#fetchmode1 = $1000*
#fetchmode2 = $2000*
#fetchmode3 = $3000*
#agacolors = $10000*
* These flags should only be used with AGA Amigas.

Colours
The #agacolors flag must ALWAYS be set when more than 32 colours are in use or when
24 bit colour definition is required.

SmoothScrolling
By setting the smooth scrolling flag the extended form of DisplayBitmap may be used
which allows the bitmap to be displayed at any offset. This enables the programmer to
scroll the portion of the bitmap being displayed. See the Blitz Mode programming chapter
for an explanation of hardware scrolling.

Page 90

Notes:

• Always use the extended form of DisplayBitmap with smoothscrolling set, even when the
offset is 0,0.

• DisplayBitmap accepts quick types for the x offset and will position the bitmap in
fractions of pixels on AGA machines.

• The width of the display will be less than the default 320/640/1280 when smooth
scrolling is enabled.

Dual Playfield
By setting the DualPlayfield flag two bitmaps may be displayed on top of each other in one
display. A combination of DualPlayfield and SmoothScrolling is allowed for parallax type
effects. Note that with AGA machines, it is possible to display two 16 colour bitmaps by
enabling DualPlayfield and setting number of bitmaps to 8.

Sprites
The number of sprites available will depend on the type of display and the fetch mode
settings. Most AGA modes will require the display to be shrunk horizontally for 8 sprites to
be displayed. Currently this can only be achieved using the DisplayAdjust command and
certain examples of this can be found on the Blitz examples disk.

AGA hardware allows the programmer to display sprites in lores, hires or superhires. The
higher resolutions allow graphics dithering by the artist, essential if 3 coloured sprites are
in use. Larger sprites are also available using the SpriteMode command. Dithered large,
super hi-res sprites can be created to look better than lower resolution 16 colour sprites
using such tools as ADPro.

Note that it is unrealistic to display more than 4 bitplanes and have more than 3 sprite
channels available, the adjust required results in a very narrow display indeed.

Fetch Mode
AGA hardware allows bitplane data to be fetched by the DMA in 16,32 or 64 pixel groups.
The larger fetches give the processor more bandwidth, this is especially noticeable with
AGA Amigas running without additional fast mem.

Using increased fetchmodes, bitplanes must always be a multiple of 64 pixels wide.

Those wanting to attempt DisplayAdjusts on displays with larger fetch modes will
encounter severe difficulties in creating a proper display. We think it is actually impossible
for displays to run at fetch mode 3 with more than 1 sprite without having to adjust the
display to around 256 pixels across.

Page 91

Multiple Displays
When more than one CopList is to be displayed, care must be taken that there is a gap of at
least 3 lines between each. This means the ypos of a lower coplist must be equal or greater
than the above ypos+height+3.

Advanced Copper Control
The long format of the InitCopList command allows allocation for custom copper
commands. Certain commands have been added to the Display Library which will require
this parameter to be set.

There are two forms of custom copper commands. The first will allow the copper to affect
the display every scan line while the second defines a certain line for the copper to do its
thing. These new commands include:

The following require a negative size. This denotes that so many instructions must be
allocated for every scan line of the display.

DisplayDblScan CopList#,Mode[,CopOffset] ;(size=-2)
DisplayRainbow CopList#,Register,Palette[,CopOffset] ;(ecs=-1 aga=-4)
DisplayRGB CopList#,Register,line,r,g,b[,CopOffset] ;(ecs=-1 aga=-4)
DisplayUser CopList#,Line,String[,CopOffset] ;(size=-len/4)
DisplayScroll CopList#,&xpos.q(n),&xpos.q(n)[,CopOffset] ;(size=-3)

The following require the size be specified as a positive parameter denoting that so many
instructions be allocated for each instance of each command. Note that these two
commands may NOT be mixed with the commands above.

CustomColors CopList#,CCOffset,YPos,Palette,startcol,numcols
CustomString CopList#,CCOffset,Ypos,Copper$

Use of these commands is illustrated by code included in Blitz examples drawer.

Display Example 1
This first example creates two large bitmaps. It renders lines to one and boxes on the
other. A 32 colour palette is created and the first 16 colours are used by the back playfield
and second 16 by the front playfield.

The flags in the InitCopList command are the sum of the following:

#eightbitplanes = $08
#smoothscrolling = $10
#dualplayfield = $20
#lores = $000
#fetchmode3 = $3000*
#agacolors = $10000*

Page 92

InitCopList can be executed before going into Blitz mode. All display commands are mode
independent except CreateDisplay which can only be executed in Blitz mode.

Finally, note the extended form of the DisplayBitmap command. This allows the offset
position of both bitmaps to be assigned with the one command.

; two 16 colour playfield in dualplayfield mode
BitMap 0,640,512,4
BitMap 1,640,512,4

For i=0 To 100
 Use BitMap 0: Box Rnd(640) Rnd(512) Rnd(640) Rnd(512) Rnd(16)
 Use BitMap 1: Line Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)
Next

InitPalette 0,32

For i=1 To 51 : AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

InitCopList 0,$13038
Blitz
CreateDisplay 0
DisplayPalette 0,0

While Joyb(0)=0
 VWait
 x=160+Sin(r)*160:y=128+Cos(r)*128
 DisplayBitMap 0,0,x,y,1,320-x,256-y
 r+.05
Wend

End

Display Example 2
This second example demonstrates the use of sprites on a Display. DisplayAdjust is
required to allow us access to all 8 sprite channels. Unfortunately it is difficult to up the
fetch mode in this example without resorting to a very thin display.

SpriteMode 2 tells Blitz to create 64 pixel wide sprites for each channel. Each sprite would
require 4 channels without SpriteMode, one of the better new features of AGA.

It should be noted also that the DisplaySprite command also accepts fractional x
parameters and will position the sprite at fractional pixel positions if possible.

; smoothscrolling 16 colour screen with 8x64 wide sprites
SpriteMode 2
InitShape 0,64,64,2:ShapesBitMap 0,0
Circlef 32,32,32,1:Circle7 16,8,6,2:Circlef 48,8,6,3:Circlef 32,32,8,0
GetaSprite 0,0

Page 93

BitMap 0,640,512,4

For i=0 To 100
 Use BitMap 0:Box Rnd(640),Rnd(512),Rnd(640),Rnd(512),Rnd(16)
Next
InitPalette 0,48

For i=1 To 31:AGAPalRGB 0,i,Rnd(256),Rnd(256),Rnd(256):Next

InitCopList 0,$10014
DisplayAdjust 0,-2,8,0,16,0 ;under scan!
Blitz
CreateDisplay 0
DisplayPalette 0,0

For i=0 To 7
 DisplaySprite 0,0,20+i*30,(20+i*50)&127,i
Next

While Joyb(0)=0
 VWait
 x=160+Sin(r)*160:y=128+Cos(r)*128
 DisplayBitMap 0,0,x,y
 r+.05
Wend

End

Page 94

R-1: PROGRAM FLOW

A computer program is made up of a sequence of commands that are executed
sequentially (one after the other). Certain commands are used to interrupt this process and
cause program execution to jump to a different location in the program. There are several
different ways of controlling this program flow in Blitz.

BASIC commands to change program flow such as Goto and Gosub are standard in Blitz.
Unlike older BASICs, locations are specified as program labels not line numbers. Modern
BASIC features such as procedures (Statements & Functions), While...Wend, Repeat...Until,
Select...Case allow a more structured approach to programming.

Finally Blitz allows control over interrupts. This allows external events to override normal
program flow and jump (temporarily) to a predefined location in the program.

Goto label
Causes program flow to be transferred to the specified program label. This allows sections
of a program to be skipped or repeated.

Gosub label
Operates in two steps. First, the location of the instruction following the Gosub is
remembered in a special storage area (known as the ‘stack’). Secondly, program flow is
transferred to the specified program label.

The section of program that program flow is transferred to is known as a ‘subroutine’ and
should be terminated by a Return command.

Return
Used to return program flow to the instruction following the previously executed Gosub
command. This allows the creation of ‘subroutines’ which may be called from various
points in a program.

On expression Goto|Gosub label[,label...]
Allows a program to branch, via either a Goto or a Gosub, to one of a number of program
labels depending upon the result of the specified expression.

If the specified expression results in a 1, then the first label will be branched to. A result of
2 will cause the second label to be branched to and so on. If the result of the expression is
less than one, or not enough labels are supplied, then the program flow will continue
without a branch.

Page 95

End
Halt program flow completely. In case of programs run from Blitz editor, you will be
returned to editor. In case of executable files, will be returned to Workbench or CLI.

Stop
Causes the Blitz debugger to interrupt program flow. Place Stop commands in your code as
breakpoints when debugging and ensure runtime errors are enabled. Click on Run from the
debugger to continue program flow after a Stop.

If expression [Then...]
Allows execution of a section of program depending on the result of an expression. The
Then command indicates only the rest of the line will be defined as the section of code to
either execute or not. Without a Then the section of code will be defined as that up to the
EndIf command.

Endif
Used to terminate an ‘If’ block. An If block is begun by use of If statement without the
Then present. Please refer to If for more information on If blocks.

Else [Statement...]
May be used after an If to cause program instructions to be executed if the expression
specified in the If proved to be false.

While expression
Used to execute a series of commands repeatedly while the specified expression proves to
be true. The commands to be executed include all the commands following the While until
the next matching Wend.

Wend
Used in conjunction with While to determine a section of program to be executed
repeatedly based upon the truth of an expression.

Select expression
Examines and ‘remembers’ the result of the specified expression. The Case commands
may then be used to execute different sections of program code depending on the result of
the expression in the Select line.

Page 96

Case expression
Used following a Select to execute a section of program code when, and only when, the
expression specified in the Case statement is equivalent to the expression evaluated in the
Select statement.

If a Case statement is satisfied, program flow will continue until the next Case Default or
End Select statement is encountered, at which point program flow will branch to the next
matching End Select.

Default
May appear following a series of Case statements to cause a section of code to be
executed if NONE of the Case statements were satisfied.

End Select
Terminates a Select...Case...Case...Case sequence. If program flow had been diverted
through the use of a Case or Default statement, it will continue from the terminating End
Select.

For var=expression1 To expression2 [Step expression3]
The For statement initialises a For...Next loop. All For...Next loops must begin with a For
statement, and must have a terminating Next statement further down the program.
For...Next loops cause a particular section of code to be repeated a certain number of
times. The For statement does most of the work in a For...Next loop. When For is executed,
the variable specified by var (known as the index variable) will be set to the value
expression1. After this, the actual loop commences.

At the beginning of the loop, a check is made to see if the value of var has exceeded
expression2. If so, program flow will branch to the command following For...Next loop's
Next, ending the loop. If not, program flow continues on until the loop's Next is reached. At
this point, value specified in expression3 (‘step’ value) is added to var, and program flow is
sent back to the top of the loop, where var is again checked against expression2. If
expression3 is omitted, a default step value of 1 will be used.

In order for a For...Next loop to count ‘down’ from one value to a lower value, a negative
step number must be supplied.

Next [var[,var...]]
Terminates a For...Next loop. Please refer to the For command for more information on
For...Next loops.

Page 97

Repeat
Used to begin a Repeat...Until loop. Each Repeat statement in a program must have a
corresponding Until further down the program.

The purpose of Repeat/Until loops is to cause a section of code to be executed AT LEAST
ONCE before a test is made to see if the code should be executed again.

Until expression
Used to terminate a Repeat...Until loop. If Expression is true (non 0) program flow will
continue from the command following Until. If expression is false (0) program flow will go
back to the corresponding Repeat, found further up the program.

Forever
May be used instead of Until to cause a Repeat...Until loop to NEVER exit. Executing
Forever is identical to executing ‘Until 0'.

Pop Gosub|For|Select|If|While|Repeat
Sometimes, it may be necessary to exit from a particular type of program loop in order to
transfer program flow to a different part of program. Pop must be included before the Goto
which transfers program flow out from the inside of the loop.

Actually, Pop is only necessary to prematurely terminate Gosubs, Fors and Selects. If,
While and Repeat have been included for completeness but are not necessary.

MouseWait
Halts the program until left mouse button is pushed. If left mouse is already held down
when a MouseWait is executed, program will simply continue through.

MouseWait should normally be used only for program testing purposes, as MouseWait
severely slows down multi-tasking.

VWait [frames]
Causes program flow to halt until the next vertical blank occurs. Optional frames parameter
may be used to wait for a particular number of vertical blanks.

Especially useful in animation for synchronising display changes with the rate at which the
display is physically redrawn by the monitor.

Statement procedurename{[parameter1[,paramater2...]]}
Declares all following code up to the next End Statement as being a ‘statement type’
procedure.

Page 98

Up to 6 parameters may be passed to a statement in the form of local variables through
which calling parameters are passed.

In Blitz, all statements and functions must be declared before they are called.

End Statement
Declares the end of a ‘statement type’ procedure definition. All statement type procedures
must be terminated with an End Statement.

Statement Return
May be used to prematurely exit from a ‘statement type’ procedure. Program flow will
return to the command following the procedure call.

Function [.type] procedurename{[parameter1[,parameter2...]]}
Declares all following code up to the next End Function as being a function type procedure.
The optional type parameter may be used to determine what type of result is returned by
the function. Type, if specified, must be one Blitz’s 6 primitive variable types. If no type is
given, the current default type is used. Up to 6 parameters may be passed to a function in
form of local variables through which calling parameters are passed. Functions may return
values through the Function Return command. In Blitz, all statements and functions must
be declared before they are called.

End Function
Declares the end of a ‘function type’ procedure definition. All function type procedures
must be terminated with an End Function.

Function Return expression
Allows ‘function type' procedures to return values to their calling expressions. Function
type procedures are called from within Blitz expressions.

Shared var[,var...]
Used to declare certain variables within a procedure definition as being global variables.
Any variables appearing within a procedure definition that do not appear in a Shared
statement are, by default, local variables.

Page 99

SetInt type
Used to declare a section of program code as ‘interrupt’ code. Often, when a computer
program is running, an event of some importance takes place which must be processed
immediately. Different types of interrupt on the Amiga are as follows:

Type Cause of Interrupt
0 Serial transmit buffer empty
1 Disk block read/written
2 Software interrupt
3 Cia ports interrupt
4 Co-processor (‘copper’) interrupt
5 Vertical blank
6 Blitter finished
7 Audio channel 0 pointer/length fetched
8 Audio channel 1 pointer/length fetched
9 Audio channel 2 pointer/length fetched
10 Audio channel 3 pointer/length fetched
11 Serial receive buffer full
12 Floppy disk sync
13 External interrupt

The most useful of these interrupts is the vertical blank interrupt. This interrupt occurs
every time an entire video frame has been fully displayed (about every fiftieth of a second),
and is very useful for animation purposes. If a section of program code has been
designated as a vertical blank interrupt handler, then that section of code will be executed
every fiftieth of a second.

Interrupt handlers must perform their task as quickly as possible, especially in case of
vertical blank handlers which must NEVER take longer than 1/5 of sec. to execute.

Interrupt handlers in Blitz must NEVER access string variables or literal strings. In Blitz
mode, this is the only restriction on interrupt handlers. In Amiga mode, no blitter, Intuition
or file I/O commands may be executed by interrupt handlers.

To set up a section of code to be used as an interrupt handler, you use the SetInt command
followed by the actual interrupt handler code. An End SetInt should follow the interrupt
code. The type parameter specifies the type of interrupt, from the above table, the
interrupt handler should be attached to. For example, SetInt 5 should be used for vertical
blank interrupt code.

More than one interrupt handler may be attached to a particular type of interrupt.

End SetInt
Must appear after a SetInt to signify the end of a section of interrupt handler code. Please
refer to SetInt for more information of interrupt handlers.

Page 100

ClrInt type
May be used to remove any interrupt handlers currently attached to specified interrupt
type. SetInt is used to attach interrupt handlers to particular interrupts.

SetErr
Allows you to set up custom error handlers. Program code which appears after the SetErr
command will be executed when any Blitz runtime errors are caused. Custom error code
should be ended by an End SetErr.

End SetErr
Must appear following custom error handlers installed using SetErr. Please refer to SetErr
tor more information on custom error handlers.

ClrErr
May be used to remove a custom error handler set up using SetErr.

ErrFail
May be used within custom error handlers to cause a ‘normal’ error.

The error which caused the custom error handler to be executed will be reported and
transfer will be passed to direct mode.

Page 101

R-2: VARIABLE HANDLING

To keep track of numbers and text program variables are required. These variables are
assigned a name and given a type which dictates the sort of information they are able to
contain. Blitz supports 5 standard numeric types and the string type which is used to store
text type information.

Variable ‘arrays’ are used to store a large collection of values all of one type, these arrays
are similar to normal variables except they must be dimensioned (the number of elements
defined) before they are used.

Blitz offers many extensions to these BASIC features. NewTypes may be defined which are
a collection of several standard types. A single NewType variable can contain an
assortment of numeric and string information similar to structures in C.

List arrays offer more control over standard arrays, they are also much faster to
manipulate. Blitz contains many commands for operating on linked lists of data.

Let var=expression
Let is an optional command used to assign a value to a variable. Let must always be
followed by a variable name and an expression. An equals sign (=) is placed between the
variable name and the expression. If the equals sign is omitted, then an operator (eg. +, *)
must appear between the variable name and the expression. In this case, the specified
variable will be altered by the specified operator and expression.

Exchange var,var
Will swap the values contained in the two specified variables. May only be used with
variables of the same type.

MaxLen stringvar=expression
Sets aside a block of memory for a string variable to grow into. This is normally only
necessary in the case of special Blitz commands which require this space to be present
before execution. Currently, only two Blitz commands require the use of MaxLen -
FileRequest$ and Fields.

DEFTYPE .typename [var[,var...]]
May be used to declare a list of variables as being of a particular type. In this case, var
parameters must be supplied.

May also be used to select a default variable type for future ‘unknown' variables. Unknown
variables are variables created with no typename specifier. In this case, no var parameters
are supplied.

Page 102

NEWTYPE .typename
Creates a custom variable type and must be followed by a list of entry names separated by
‘:’ and/or new lines. NEWTYPE terminates using End NEWTYPE .

SizeOf .typename[,entrypath]
Allows you to determine the amount of memory, in bytes, a particular variable type takes
up. May also be followed by an optional entrypath in which case the offset from the start of
the type to the specified entry is returned.

Dim arrayname [list] (dimension1[,dimension2...])
Used to initialise a BASIC array. Blitz supports two array types: simple arrays and list
arrays. The optional list parameter, if present, denotes a list array. Simple arrays are
identical to standard BASIC arrays, and may be of any number dimensions. List arrays may
be of only one dimension.

ResetList arrayname()
Used in conjunction with a list array to prepare the list array for NextItem processing. After
executing a ResetList, the next NextItem executed will set the list array’s ‘current element’
pointer to the list array’s very first.

ClearList arrayname()
Used in conjunction with list arrays to completely ‘empty’ out the specified list array. List
arrays are automatically emptied when they are created.

AddFirst(arrayname())
Allows you to insert an array list item at the beginning of an array list. Returns a true/false
value reflecting whether or not there was enough room in the array list to add an element.
If an array element was available, AddFirst returns a true value (-1), and sets the list array's
current item pointer to the item added. If no array element was available, AddFirst returns
false (0).

AddLast(arrayname())
Allows you to insert an array list item at the end of an array list. AddLast returns a true/false
value reflecting whether or not there was enough room in the array list to add an element.
If an array element was available, AddLast returns a true value (-1), and sets the list array's
current item pointer to the item added. If no array element was available, AddLast returns
false (0).

Page 103

AddItem(arrayname())
Allows you to insert an array list item after the list array’s current item. AddItem returns a
true/false value reflecting whether or not there was enough room in the array list to add an
element. If an array element was available, AddItem returns a true value (-1), and sets the
list array's current item pointer to the item added. If no array element was available,
AddItem returns false (0).

KillItem arrayname()
Deletes the specified list array's current item. After executing KillItem, the list array’s
current item pointer will be set to the item before the item deleted.

PrevItem(arrayname())
Will set the specified list array’s current item pointer to the item before the list array’s old
current item. This allows for backwards processing of a list array. PrevItem returns a
true/false value reflecting whether or not there actually was a previous item. If a previous
item was available, PrevItem will return true (-1). Otherwise, PrevItem will return false (0).

NextItem(arrayname())
Sets the specified list array’s ‘current item’ pointer to the item after the list array’s old
current item. This allows for forward processing of a list array. NextItem returns a
true/false value reflecting whether or not there actually was a next item available or not. If
an item was available, NextItem will return true (-1), otherwise, false (0) is returned.

FirstItem(arrayname())
This will set the specified list array’s ‘current item’ pointer to the very first item in the list
array. If there are no items in the list array, FirstItem will return false (0) otherwise,
FirstItem will return true (-1).

LastItem(arrayname())
This will set the specified list array’s ‘current item’ pointer to the very last item in the list
array. If there are no items in the list array, LastItem will return false (0), otherwise
LastItem will return true (-1).

PushItem arrayname()
This causes the specified list array’s ‘current item’ pointer to be pushed onto an internal
stack. This pointer may be later recalled by executing PopItem. The internal item pointer
stack is set for up to 8 ‘pushes’.

Page 104

PopItem arrayname()
This ‘pops’ or ‘recalls’ a previously pushed current item pointer for specified list array.
arrayname() must match the array name of most recently executed PushItem.

ItemStackSize maxitems
Determines how many ‘list’ items may be pushed (using PushItem), before items must be
Pop’d off again. For example, executing ItemStackSize 1000 will allow you to push up to
1000 list items before you run out of item stack space.

SortList arrayname()
Used to rearrange the order of elements in a Blitz linked list. Order in which the items are
sorted depends on the first field of the linked list type which must be a single integer word.
Sorting criteria will be extended in future.

Sort arrayname()
Causes the specified array to be sorted. The direction of the sort may be specified using
either the SortUp or SortDown commands. The default direction used for sorting is
ascending – ie. array elements are sorted into a ‘low to high’ order.

SortUp
Used to force the Sort command to sort arrays into ascending order. Means that after being
sorted, an array’s contents will be ordered in a ‘low to high’ manner.

SortDown
Used to force the Sort command to sort arrays into descending order. Means that, after
being sorted, an array's contents will be ordered in a ‘high to low’ manner.

Page 105

R-3: INPUT/OUTPUT

Input/Output is essential for programs to function. Input includes reading data from both
disk files and data statements and getting input from the user. Output options include
writing data to files, displaying information on the screen and so-on.

Input and output are most commonly achieved with the Edit and Print commands with Edit
replacing the standard BASIC Input nomenclature. An assortment of commands are
available to redirect input and output to and from files and windows etc. Refer to the File
and Window handling sections for more information.

Those developing games in Blitz should refer to the Blitz IO section for input & output
commands more suited to their particular requirements.

Print expression[,expression...]
Allows you to output either strings or numeric values to the current output channel.
Commands such as WindowOutput or BitMapOutput may be used to alter the current
output channel.

NPrint expression[,expression...]
Allows you to output either strings or numeric values to the current output channel.
Commands such as WindowOutput or BitMapOutput may be used to alter the current
output channel.

After all expressions have been output, NPrint automatically prints a newline character.

Format formatstring
Allows you to control the output of any numeric values by the Print or NPrint commands.
FormatString is an 80 character or less string expression used for formatting information by
the Print command. Special characters in FormatString are used to perform special
formatting functions. These special characters are:

Char Format Effect
If no digit to print, insert spaces into output
0 If no digit to print, insert zeros ('0') into output
. Insert decimal point into output
+ Insert sign of value
- Insert sign of value, only if negative
, Insert commas every 3 digits to left of number

Any other characters in FormatString will appear at appropriate positions in the output.
Format also affects the operation of the Str$ function.

Page 106

FloatMode mode
Allows you to control how floating point numbers are output by the Print or NPrint
commands.

Floating point numbers may be displayed in one of two ways: exponential format or
standard format. Exponential format displays a FP number as a value multiplied by ten
raised to a power. For example 10240 expressed exponentially is '1.024E+4' ie: 1.024 x
10 to the power of 4. Standard format simply prints values 'as is'.

A mode parameter of 1 will cause floating point values to ALWAYS be displayed in
exponential format. A mode parameter of -1 will cause FP values to ALWAYS be displayed
in standard format. A mode parameter of 0 will cause Blitz to take a 'best guess' at the
most appropriate format to use. This is the default mode for FP output.

Note that if Format has been used to alter numeric output, standard mode will always be
used to print floating point numbers.

Data[.type] item[,item...]
The Data statement allows you to include pre-defined values in programs and data items
may be transferred into variables using the Read statement. When data is read into
variables, the type of the data being read MUST match the type of the variable it is being
read into.

Read var[,var...]
Used to transfer items in Data statements into variables. Data is transferred sequentially
into variables through what is known as a 'data pointer'. When a piece of data is read the
data pointer is incremented to point at the next piece of data. Data pointer may be set to
point to a particular piece of data using the Restore command.

Restore [label]
Allows you to set Blitz's internal 'data pointer' to a particular piece of data after executing a
Restore. The first item of data following the specified label will become the data to be read
when the next Read command is executed. Restore with no parameters will reset data
pointer to very first piece of data in program.

Edit$([defaultstring$],characters)
This is Blitz's standard text input command. When used with Window and BitMap, Input
Edit$ causes the optional defaultstring$ and a cursor to be printed to display. It then waits
for the user to hit RETURN. Edit$ returns the text entered by program user as a string of
characters.

Page 107

During FileInput, Edit$ reads the next n characters from the open file or until the next
endofline character (chr$(10)). To read data from files that is not standard ASCII (ignore
EOL terminators) Inkey$ should be used instead of Edit$. Characters specifies a maximum
number of allowable characters for input. This is extremely useful in preventing Edit$ from
destroying display contents.

Edit([defaultvalue],characters)
This is Blitz's standard numeric input command. The same characteristics apply as those
for Edit$ however, Edit of course only accepts numeric input.

lnkey$[(characters)]
Used to collect one or more characters from the current input channel. The current input
channel may be selected using commands such as WindowInput, Filelnput or BitMapInput.
Inkey$ MAY NOT be used from DefaultInput input channel as CLI does not pass input back
to the program until the user hits return. Characters refers to the number of characters to
collect. The default is one character.

DefaultInput
Causes all future Edit$ and Inkey$ functions to receive their input from CLI window the
Blitz program was run from. This is the default input channel used when a Blitz program is
first run.

DefaultOutput
Cause all future Print statements to send their output to CLI window the Blitz program was
run from. This is the default output channel used when a Blitz program is first run.

FileRequest$(title$,pathname$,filename$)
This function will open up a standard Amiga style file requester on currently used screen.
Program flow will halt until user either selects a file, or hits requester's 'Cancel' button. If a
file was selected, FileRequest$ will return the full file name as a string. If 'Cancel' was
selected, FileRequest$ will return a null (empty) string.

Title$ may be any string expression to be used as a title for the file requester.

The parameters for Pathname$ MUST be a string variable with a MaxLen of at least 160
and filename$ MUST be a string variable with a MaxLen of at least 64.

PopInput
After input has been re-directed (eg. using WindowInput/Filelnput), PopInput may be used
to return the channel to its previous condition.

Page 108

PopOutput
After output has been re-directed (eg using WindowOutput/FileOutput), PopOutput may be
used to return the channel to its previous condition.

Joyx(port)
This will return the left/right status of a joystick plugged into the specified port. Port must
be either 0 or 1 with 0 being the port the mouse is normally plugged into. If the joystick is
held to the left, Joyx will return -1. If the joystick is held to the right, Joyx will return 1. If
the joystick is held neither left or right, Joyx will return 0.

Joyy(port)
Will return the up/down status of a joystick plugged into the specified port. Port must be
either 0 or 1 with 0 being the port the mouse is normally plugged into. If the joystick is held
upwards, Joyy will return -1. If the joystick is held downwards, Joyy will return 1. If the
joystick is held neither upwards or downwards, Joyy will return 0.

Joyr(port)
May be used to determine the rotational direction of a joystick plugged into the specified
port. Port must be either 0 or 1 with 0 being the port the mouse is normally plugged into.
Joyr returns a value from 0 through 8 based on the following table:

Direction Value
Up 0
Up-Right 1
Right 2
Down-Right 3
Down 4
Down-Left 5
Left 6
Up-Left 7
No Direction 8

Joyb(port)
Read the button status of the device plugged into the specified port. Port must be either 0
or 1 with 0 being the port where mouse is normally plugged into. If the left button is
pressed, Joyb will return 1. If right button is pressed, Joyb will return 2. If both buttons are
pressed, Joyb will return 3. If no buttons are pressed, Joyb will return 0.

Page 109

Gameb(port#)
Gameb returns the button states of CD32 style game controllers. The values of all buttons
pressed are added together to make up the value returned by Gameb. To check if a certain
button is down a logical AND should be performed, buttonvalue AND returnvalue will
evaluate to 0 if the button is not held down. The button values are:

Button Value
Play/Pause 1
Reverse 2
Forward 4
Green 8
Yellow 16
Red 32
Blue 64

Page 110

R-4: FILE HANDLING & IFF INFO

Blitz supports 2 modes of file access: sequential and random. The following section covers
the Blitz commands that open, close and operate these two types of files.

Blitz also contains special commands for finding information about ILBM files which are
standard on the Amiga for containing graphics in the form of bitmaps and brushes. For
specialised commands that read and write graphics and sound files more information and
command descriptions are available in the appropriate sections.

OpenFile(file#,filename$)
Attempts to open the file specified by filename$. If the file was successfully opened,
OpenFile will return true (-1), otherwise OpenFile will return false (0).

Files opened using OpenFile may be both written to and read from. If the file specified by
filename$ did not already exist before the file was opened, it will be created.

Files opened with OpenFile are intended for use by the random access file commands
although it is quite legal to use these files in a sequential manner.

ReadFile(file#,filename$)
Opens an existing file specified by filename$ for sequential reading. If the specified file
was successfully opened, ReadFile will return true (-1), otherwise false (0) will be returned.

Once a file is open using ReadFile, FileInput may be used to read information from it.

WriteFile(file#,filename$)
Creates a new file specified by filename$ for the purpose of sequential file writing. If the
file was successfully opened, WriteFile will return true (-1), otherwise false (0) will be
returned.

A file opened using WriteFile may be written to by using the FileOutput command.

CloseFile file#
Used to close a file opened using one of the file open functions (FileOpen, ReadFile,
WriteFile). This should be done to all files when they are no longer required.

Fields file#,var[,var...]
Set up fields of a random access file record. Once Fields is executed, Get and Put are used
to read and write information to and from the file. The var parameters specify a list of
variables you wish to be either read from or written to the file.

Page 111

When a Put is executed the values held in these variables will be transferred to the file.
When a Get is executed these variables will take on values read from the file.

Any string variables in the variable list MUST have been initialised to contain a maximum
number of characters. This is done using the MaxLen command. These string variables
must NEVER grow to be longer than their defined maximum length.

Put file#,record
Used to transfer the values contained in a Fields variable list to a particular record in a
random access file. When using Put to increase the size of a random access file, you may
only add to the immediate end of file. For example, if you have a random access file with 5
records in it, it is illegal to put record number 7 to the file until record number 6 has been
created.

Get file#,record
Transfer information from a particular record of a random access file into a variable list set
up by Fields command. Only records which also exist may retrieved.

FileOutput file#
Causes the output of all subsequent Print and NPrint commands to be sent to the specified
sequential file. When the file is later closed, Print statements should be returned to an
appropriate output channel (eg: DefaultOutput or WindowOutput).

Filelnput file#
Causes all subsequent Edit, Edit$ and Inkey$ commands to receive their input from the
specified file. When the file is later closed, input should be redirected to an appropriate
channel (eg: DefaultInput or WindowInput).

FileSeek file#,position
Allows you to move to a particular point in the specified file. The first piece of data in a file
is at position 0, the second at position 1 and so on. Position must not be set to a value
greater than the length of the file.

Used in conjunction with OpenFile and Lof, FileSeek may be used to append to a file.

Lof(file#)
Returns the length, in bytes, of the specified file.

Page 112

Eof(file#)
Allows you to determine if you are currently positioned at the end of the specified file. If so,
Eof will return true (-1), otherwise Eof will return false (0). If you are at the end of a file, any
further writing to the file will increase its length, while any further reading from the file will
cause an error.

Loc(file#)
May be used to determine your current position in the specified file. When a file is first
opened, you will be at position 0 in the file.

DosBuffLen bytes
All Blitz file handling is done through the use of special buffering routines. This is done to
increase the speed of file handling, especially in the case of sequential files. Initially, each
file opened is allocated a 2,048 byte buffer. However, if memory is tight this buffer size may
be lowered using the DosBuffLen command.

KillFile filename$
Will simply attempt to delete the specified file. No error will be returned if the file could not
be deleted.

CatchDosErrs
Whenever you are executing AmigaDOS I/O (for example, reading or writing a file), there is
always the possibility of something going wrong (for example, disk not inserted...
read/write error etc.). Normally, when such problems occur, AmigaDOS displays a suitable
requester on the Workbench window. However, by executing CatchDosErrs you can force
such requesters to open on a Blitz window.

The window you wish DOS error requesters to open on should be the currently used
window at the time CatchDosErrs is executed.

ReadMem file#,address,length
Allows you to read a number of bytes, determined by length, into an absolute memory
location determined by address from an open file specified by file#. Be careful using
ReadMem, as writing to absolute memory may have serious consequences if you don't
known what you're doing!

WriteMem file#,address,length
Allows you to write a number of bytes, determined by length from an absolute memory
location determined by address to an open file specified by file#.

Page 113

Exists(filename$)
Actually returns the length of the file. Unlike Lof(), Exists() is for files that have not already
been opened. If 0 the file either doesn’t exist, is empty or is perhaps not a file at all!
Hmmm, anyway the following poke turns off the "Please Insert Volume Blah:" requester so
you can use Exists to wait for disk changes:

Poke.l Peek.l(Peek.l(4)+276)+184,-1

ILBMlnfo filename$
Examines an ILBM file. Once ILBMInfo has been executed, ILBMWidth, ILBMHeight and
ILBMDepth examine properties of the image contained in file.

ILBMWidth
Returns the width (pixels) of an ILBM image examined with ILBMInfo.

ILBMHeight
Returns the height (pixels) of an ILBM image examined with ILBMInfo.

ILBMDepth
Returns the depth (bitplanes) of ILBM image examined with ILBMInfo.

ILBMViewMode
Returns the viewmode of the file that was processed by ILBMInfo. This is useful for
opening a screen in the right mode before using LoadScreen etc. different values of
ViewMode are as follows (add/or them for different combinations):

Mode Value
HiRes 32768
Ham 2048
HalfBrite 128
Interlace 4
LoRes 0

Page 114

R-5: NUMERIC & STRING FUNCTIONS

This section covers all Blitz functions which accept and return numeric and string values.
Note that all the transcendental functions (eg. Sin, Cos) operate in radians.

Functions that return information about system time and date. Workbench parameters and
so forth are also listed in this section.

True
True is a system constant with a value of -1.

False
False is a system constant with a value of 0.

NTSC
Returns 0 if the display is currently in PAL mode or -1 if currently in NTSC mode. This may
be used to write software which dynamically adjusts itself to different versions of the
Amiga computer.

DispHeight
Return 256 if executed on a PAL Amiga or 200 if on an NTSC Amiga. This allows programs
to open full sized screens, windows,etc on any Amiga.

VPos
Returns the vertical position of the video beam. Useful in both high speed animation where
the screen update may need to be synced to a certain video beam position (not just the top
of frame as with VWait) and for a fast random member generator in non frame-synced
applications.

Peek[.type](address)
Returns the contents of the absolute memory location specified by address. The optional
type parameter allows peeking of different sizes. For example, to peek a byte, you would
use Peek.b; to peek a word, you would use Peek.w; and to peek a long, you would use
Peek.l. It is also possible to peek a string using Peek$. This will return a string of characters
read from consecutive memory locations until a byte of 0 is found.

Abs(expression)
Returns the positive equivalent of expression.

Page 115

Frac(expression)
Returns the fractional part of expression.

Int(expression)
This returns the integer part (before the decimal point) of expression.

QAbs(quick)
Works just like Abs except that the value it accepts is a quick. This enhances the speed at
which the function executes quite dramatically. Of course you are limited by the restrictions
of the quick type of value.

QFrac(quick)
Returns the fractional part of a quick value. It works like Frac() but accepts a quick value as
its argument. It's faster than Frac() but has normal quick value limits.

QLimit(quick,low,high)
Used to limit the range of a quick number. If quick is greater than or equal to low, and less
than or equal to high, the value of quick is returned. If quick is less than low, then low is
returned. If quick is greater than high, then high is returned.

QWrap(quick,low,high)
Will wrap the result of the quick expression if quick is greater than or equal to high, or less
than low. If quick is less than low, then quick-low+high is returned. If quick is greater than
or equal to high, then quick-high+low is returned.

Rnd[(range)]
Returns a random number. If range isn’t specified then a random decimal is returned
between 0 and 1. If range is specified, then a decimal value between 0 and range is
returned.

Sgn(expression)
Returns the sign of expression. If expression is less than 0, then -1 is returned. If
expression=0 then 0 is returned. If expression is >0 then 1 is returned.

Cos(float)
Returns the cosine of the value float.

Page 116

Sin(float)
Returns the sine of the value float.

Tan(float)
Returns the tangent of the value float.

ACos(float)

Returns the arc cosine of the value float.

ASin(float)
Returns the arc sine of the value float.

ATan(float)
Returns the arc tangent of the value float.

HCos(float)
Returns the hyperbolic cosine of the value float.

HSin(float)
Returns the hyperbolic sine of the value float.

HTan(float)
Returns the hyperbolic tangent of the value float.

Exp(float)
Returns e raised to the power of float.

Sqr(float)
Returns the square root of float.

Log10(float)
Returns the base 10 logarithm of float.

Log(float)
Returns the natural (base e) logarithm of float.

Page 117

QAngle(srcx,srcy,destx,desty)
Returns the angle between the two 2D co-ordinates passed. The angle.q returned is a
value from 0-1, 1 representing 360 degrees in standard polar geometry.

Left$(string$,length)
Returns the length leftmost characters of string string$.

Right$(string$,length)
Returns the rightmost length characters from string string$.

Mid$(string$,startchar[,length])
Returns length characters of string string$ starting at character startchar. If the optional
length parameter is omitted, then all characters from startchar up to the end of string$ will
be returned.

Hex$(expression)
Returns an 8 character string equivalent to hexadecimal representation of expression.

Bin$(expression)
Returns a 32 character string equivalent to a binary representation of expression.

Chr$(expression)
Returns a one character string equivalent to the ASCII character expression. ASCII is a
standard way of coding the characters used by the computer display.

Asc(string$)
Returns the ASCII value of the first characters in the string string$.

String$(string$,repeats)
Return a string containing repeats sequential occurrences of the string string$.

Instr(string$,findstring$[,startpos])
Attempts to locate findstring$ within string$. If a match is found, it returns the character
position of the first matching character. If no match is found, it returns 0. The optional
startpos parameter allows you to specify a starting character position for the search.

Page 118

CaseSense
Used to determine whether the search is case sensitive or not.

Replace$(string$,findstring$,replacestring$)
Search the string string$ for any occurrences of the string findstring$ and replace it with
the string replacestring$. CaseSense is used to determine whether the search is case
sensitive or not.

Mki$(integer)
Create a two byte character string, given the two byte numeric value numeric. Often used
before writing integer values to sequential files to save disk space. When the file is later
read in, Cvi may be used to convert the string back to an integer.

Mkl$(long)
Create a four byte character string, given the four byte numeric value long. Often used
when writing long values to sequential files to save disk space. When the file is later read
in, Cvl may be used to convert the string back to a long.

Mkq$(quick)
Create a four byte character string, given the four byte numeric value quick. Often used
when writing quick values to sequential files to save disk space. When the file is later read
in, Cvq may be used to convert the string back to a quick.

Cvi(string$)
Returns an integer value equivalent to the left 2 characters of string$. This is the logical
opposite of Mki$.

Cvl(string$)
Returns a long value equivalent to the left 4 characters of string$. This is the logical
opposite of Mkl$.

Cvq(string$)
Returns a quick value equivalent to the left 4 characters of string$. This is the logical
opposite of Mkq$.

Page 119

Len(string$)
Returns the length of the string string$.

UnLeft$(string$,length)
Removes the rightmost length characters from the string string$.

UnRight$(string$,length)
Removes the leftmost Length characters from the string string$.

StripLead$(string$,expression)
Removes all leading occurrences of the ASCII character specified by expression from the
string string$.

StripTail$(string$,expression)
Removes all trailing occurrences of the ASCII character specified by expression from the
string string$.

LSet$(string$,characters)
Returns a string of characters characters long. The string string$ will be placed at the
beginning of this string. If string$ is shorter than characters the right hand side is padded
with spaces. If it is longer, it will be truncated.

RSet$(string$,characters)
Returns a string of characters characters long. The string string$ will be placed at end of
this string. If string$ is shorter than characters the left hand side is padded with spaces. If
it is longer, it will be truncated.

Centre$(string$,characters)
Returns a string of characters characters long. The string string$ will be centred in the
resulting string. If string$ is shorter than characters the left and right sides will be padded
with spaces. If it is longer, it will be truncated on either side.

This function returns the string string$ converted into lowercase.

UCase$(string$)/LCase$(string$)
Returns the string string$ converted to uppercase/lowercase.

Page 120

CaseSense On|Off
Allows control of the searching mode used by the Instr and Replace$ functions. CaseSense
On indicates that an exact match must be found.

CaseSense Off indicates that alphabetic characters may be matched even if they are not in
the same case. CaseSense On is the default search mode.

Val(string$)
Converts the string string$ into a numeric value and returns this value. When converting
the string, the conversion will stop the moment either a non numeric value or a second
decimal point is reached.

Str$(expression)
Returns a string equivalent of the numeric value expression. This now allows you to
perform string operations on this string.

If the Format command has been used to alter numeric output, this will be applied to the
resultant string.

UStr$(expression)
Returns a string equivalent of the numeric value expression. This now allows you to
perform string operations on this string.

Unlike Str$, UStr$ is not affected by any active Format commands.

SystemDate
Returns the system date as the number of days passed since 1/1/1978.

Date$(days)
Converts the format returned by SystemDate (days passed since 1/1/1978) into a string
format of dd/mm/yyyy or mm/dd/yyyy depending on the date format (defaults to 0).

NumDays(date$)
Converts a Date$ in the above format to the day count format, where numdays is the
number of days since 1/1/1978.

DateFormat format# 0 or 1
Configures the way both date$ and numdays treat a string representation of the date:
0=dd/mm/yyyy and 1=mm/dd/yyyy

Page 121

Days
Days, Months and Years each return the particular value relevant to the last call to
SystemDate. They are most useful for when the program needs to format the output of the
date other than that produced by date$. WeekDay returns which day of the week it is with
Sunday=0 through to Saturday=6.

Months
See description of Days.

Years
See description of Days.

WeekDay
See description of Days.

Hours
Hours, Mins and Secs return the time of day when SystemDate was last called.

Mins
Hours, Mins and Secs return the time of day when SystemDate was last called.

Secs
Hours, Mins and Secs return the time of day when SystemDate was last called.

WBWidth
The functions WBWidth, WBHeight, WBDepth & WBViewMode return the width, height,
depth & viewmode of the current Workbench screen as configured by preferences.

WBHeight
See Description of WBWidth.

WBDepth
See Description of WBWidth.

Page 122

WBViewMode
See Description of WBWidth.

Processor
Returns the processor type in the computer on program is currently running.

0 = 68000
1 = 68010
2 = 68020
3 = 68030
4 = 68040

ExecVersion
Returns the relevant information about the system the program is running on.

33 = 1.2
34 = 1.3
36 = 2.0
39 = 3.0

Page 123

R-6: COMPILER DIRECTIVES & OBJECT HANDLING

The following section refers to the Blitz Compiler Directives, commands which affect how a
program is compiled. Conditional compiling, macros, include files and more are covered in
this chapter.

Information regarding control of Blitz Objects is also listed in this section. Objects are
Blitz’s way of controlling specialised data concerned with windows and shapes etc.

USEPATH pathtext
Allows you to specify a ‘shortcut’ path when dealing with NEWTYPE variables. Consider the
following lines of code:

aliens()\x= 160
aliens()\y= 100
aliens()\xs= 10
aliens()\ys=-10

USEPATH can be used to save you some typing, like so:

USEPATH aliens()
\x=160
\y=100
\xs=10
\ys=-10

Whenever Blitz encounters a variable starting with the backslash character (‘\’), it simply
inserts the current USEPATH text before the backslash.

BLITZ
Used to enter Blitz mode. For a full discussion on Amiga/Blitz mode, please refer to the
programming chapter of the Blitz Programmer’s Guide.

AMIGA
Used to enter Amiga mode. For a full discussion on Amiga/Blitz mode, please refer to the
programming chapter of the Blitz Programmer’s Guide.

QAMIGA
Used to enter Quick Amiga mode. For a full discussion on Amiga/Blitz mode, please refer to
the programming chapter of the Blitz Programmer’s Guide.

Page 124

INCLUDE filename
A compile-time directive which causes the specified file, filename, to be compiled as part
of the programs object code. The file must be in tokenised form (eg. saved from the Blitz
editor) - ASCII files may not be INCLUDE’d. INCDIR may be used to specify a path for
filename.

Filename may be optionally quote enclosed to avoid tokenisation problems.

XINCLUDE filename
Exclusive include. XINCLUDE works identically to INCLUDE with the exception that
XlNCLUDE’d files are only ever included once. For example, if a program has two XINCLUDE
statements with the same filename, only the first XINCLUDE will have any effect.

IncBin filename
Allows you to include a binary file in your object code. This is mainly of use to assembler
language programmers, as having big chunks of binary data in the middle of a BASIC
program is not really a good idea. You may have to use the ‘?’ character to reference a
chunk of data that has been included. For example:

DecodeILBM 1,?img0
;more of the program
img0: IncBin “data/0.iff”

INCDIR pathname
May be used to specify a path for filename. Filename may be optionally quote enclosed to
avoid tokenisation problems.

The INCDIR command allows you to specify an AmigaDOS path to be prefixed to any.
Filenames specified by any of INCLUDE, XINCLUDE or INCBIN commands.

CNIF constant comparison constant
Allows you to conditionally compile a section of program code based on a comparison of
two constants. Comparison should be one of ‘<’, ‘>’, ‘=’, ‘<>’, ‘<=’ or ‘>=’. If the comparison
proves to be true, then compiling will continue. If comparison is false no object code will be
generated until a matching CEND is encountered.

CEND
Marks the end of a block of conditionally compiled code. CEND must always appear
somewhere following a CNIF or CSIF directive.

Page 125

CSIF “string” comparison “string”
Allows you to conditionally compile a section of program code based on a comparison of
two literal strings. Comparison should be one of ‘<’, ‘>’, ‘=’, ‘<>’, ‘<=’ or ‘>=’. Both strings
must be quote enclosed literal strings. If the comparison proves to be true, then compiling
will continue as normal. If the comparison proves to be false, then no object code will be
generated until a matching CEND is encountered.

CSIF is of most use in macros for checking macro parameters.

CELSE
May be used between a CNIF or CSIF, and a CEND to cause code to be compiled when a
constant comparison proves to be false.

CERR errormessage
Allows a program to generate compile-time error messages. CERR is normally used in
conjunction with macros and conditional compiling to generate errors when incorrect
macro parameters are encountered.

Macro macroname
Used to declare the start of a macro definition. All text following Macro, up until the next
End Macro, will be included in the macro's contents.

End Macro
Used to finish a macro definition. Macro definitions are set up using the Macro command.

RunErrsOn
These two new compiler directives are for enabling and disabling error checking in
different parts of the program, they override the settings in Compiler Options.

RunErrsOff
See description of RunErrsOn.

Use objectname object#
Will cause the Blitz object specified by Objectname and object# to become the currently
used object.

Page 126

Free Objectname object#
Frees a Blitz object. Any memory consumed by the object’s existence will be free’d up, and
in case of things such as windows and screens, the display may be altered.

Attempting to free a non-existent object will have no effect.

USED objectname
Returns the currently used object number. Useful for routines which need to operate on
currently used object, also interrupts should restore currently used object settings.

Addr objectname(object#)
A low-level function allowing advanced programmers the ability to find where a particular
Blitz object resides in RAM. Appendix at the end lists all Blitz object formats.

Maximum objectname
Allows a program to determine the ‘maximum’ setting for a particular Blitz object.
Maximum settings are entered into the OPTIONS requester, accessed through the
‘COMPILER’ menu of the Blitz editor.

Page 127

R-7: ASSEMBLER DIRECTIVES

A powerful feature of Blitz is its built-in assembler. This allows the programmer to include
machine code in their programs. You’ll find the ability to mix easily BASIC with your own
lightning fast machine code routines making a powerful connection.

There are three ways of including assembler in Blitz programs.

Inline: using PutRrg and GetReg BASIC variables can be exchanged with the 68000's data
and address registers.

Procedures: Statements and Functions can contain 100% assembler, parameters are
passed in registers D0...D5 and in case of Functions the value in D0 is returned to the
caller. The AsmExit command is used in place of Statment Return or Function Return.

Libraries: Actual commands can be added to Blitz using assembler. See the libsdev archive
in the blitzlibs: volume for more information.

Please note that when using assembler inline and within procedures address registers A4-
A6 must be preserved. Blitz uses A5 as a global variable base. A4 as a local variable base,
and tries to keep A6 from having to be re-loaded too often.

Also note that Absolute Short addressing mode and Short Branches are not supported.

DCB[.size] repeats,data
Stands for ‘define consistent block’. DCB allows you to insert a repeating series of the same
value into your assembler programs.

EVEN
Allows to word align Blitz’s internal program counter. This may be necessary if a DC, DCB or
DS statement has caused the program counter to be left at an odd address.

GetReg register,expression
Allows you to transfer the result of a BASIC expression to a 68000 register. The result of
the expression will first be converted into a long value before being moved to the data
register. Should only be used to transfer expressions to one of the 8 data registers (D0-D7).
Will use the stack to temporarily store any registers used in calculation of the expression.

PutReg register,variable
May he used to transfer a value from any 68000 register (D0-D7/A0-A7) into a BASIC
variable. If the specified variable is a string, long, float or quick, then all 4 bytes from the
register will be transferred. If the specified variable is a word or a byte, then only the
relevant low bytes will be transferred.

Page 128

SysJsr routine
Allows you to call any of Blitz’s system routines from your own program. Routine specifies a
routine number to call.

TokeJsr token[,form]
Allows to call any of Blitz’s library based routines. Token refers to either a token number, or
an actual token name. Form refers to a particular form of the token.

ALibJsr token[,form]
Is only used when writing Blitz libraries. ALibJsr allows you to call a routine from another
library from within your own library. Please refer to the Library Writing section of the
programmer’s guide for more information on library writing.

BLibJsr token[,form]
Is only used when writing Blitz libraries. BLibJsr allows you to call a routine from another
library from within your own library. Please refer to the Library Writing section of the
programmer’s guide for more information on library writing.

AsmExit
Used to exit from functions and statements written in assembler. Registers A4-A6 must be
preserved in functions and statements written in assembler.

Page 129

R-8: MEMORY CONTROL

This section deals with low-level commands which allow you access to the Amiga’s
memory. Care must be taken when accessing memory in this way or an invitation to the
alert guru may be mistakenly made.

Poke[.type] address,data
This command will place the specified data into a absolute memory location specified by
address. The size of the Poke may be specified by the optional type parameter. For
example, to poke a byte into memory use Poke.b; to poke a word into memory use Poke.w;
and to poke a long word into memory use Poke.l

In addition, strings may be poked into memory by use of Poke$. This will cause the ASCII
code of all characters in the string specified by data to be poked, byte by byte, into
consecutive memory locations. An extra 0 is also poked past the end of the string.

Peek[.type](address)
Returns the contents of the absolute memory location specified by address. The optional
type parameter allows peeking of different sizes. For example, to peek a byte, you would
use Peek.b; to peek a word, you would use Peek.w; and to peek a long, you would use
Peek.l

It is also possible to peek a string using Peek$. This will return a string of characters read
from consecutive memory locations until a byte of 0 is found.

Peeks$(address,length)
Returns a string of characters corresponding to bytes peeked from consecutive memory
locations starting at address and, length characters in length.

Call address
Call make program flow to be transferred to the memory location specified by address.
NOTE that Call is for advanced programmers only, as incorrect use of Call can lead to
severe problems - GURUS etc!

A 68000 JSR instruction is used to transfer program flow, so an RTS may be used to
transfer back to the Blitz program.

Bank(bank#)
Returns the memory location of the given memory bank, replaces the older and more
stupidly named BankLoc command.

Page 130

BankSize(bank#)
Returns the size of the memory block allocated for the specified bank#.

lnitBank Bank#,size,memtype
Allocates a block of memory and assigns it to the bank specified. The memtype is the same
as the Amiga operating system memory flags:

1 = public
2 = chip
65536 = clear memory

FreeBank bank#
De-allocates any memory block allocated tor the bank specified.

LoadBank bank#,filename$[,memtype]
This command has been modified. Instead of having to initialise the bank before loading a
file, it will now initialise the bank to the size of the file if it is not already large enough or
has not been initialised at all.

SaveBank bank#,filename$
Save the memory assigned to the bank to the filename specified.

AllocMem(size,type)
Unlike calling Exec’s AllocMem_ command directly Blitz will automatically free any
allocated memory when the program ends. Programmers are advised to use the InitBank
command. Flags that can be used with the memory type parameter are:

1 = public ;fast if present
2 = chipmem
65536 = clear ;clears all memory allocated with 0's

FreeMem location,size
Used to free any memory allocated with the AllocMem command.

Page 131

R-9: PROGRAM STARTUP

This section covers all commands dealing with how an executable file goes about starting
up. This includes the ability to allow your programs to run from Workbench and to pick up
parameters supplied through the CLI.

WBStartup
By executing WBStartup at some point in your program, your program will be given the
ability to run from Workbench. A program run from Workbench which does NOT include the
WBStartup command will promptly crash if an attempt is made to run it from Workbench.

NumPars
Allows an executable file to determine how many parameters were passed to it by either
Workbench or the CLI. Parameters passed from the CLI are typed following the program
name and separated by spaces. For example. let's say you have created an executable
program called myprog, and run it from the CLI in the following way:

1.SYS:> myprog filer Olle2

In this case, NumPars would return the value 2 - ‘file1’ and ‘file2’ being the 2 parameters.

Programs run from Workbench are only capable of picking up 1 parameter through the use
of either the parameter file’s ‘Default Tool’ entry in its ‘.info’ file, or by use of multiple
selection through the ‘Shift’ key.

If no parameters are supplied to an executable file, NumPars will return 0. During program
development, the ‘CLI Argument’ menu item in the ‘COMPILER’ menu allows you to test
out CLI parameters.

Par$(parameter)
Returns a string equivalent to a parameter passed to an executable file through either the
CLI or Workbench. Refer to NumPars for more information.

CloseEd
Causes the Blitz editor screen to ‘close down’ when programs are executed from within
Blitz. This may be useful when writing programs which use a large amount of chip memory,
as the editor screen itself occupies 40K of ChipMem. CloseEd will have no effect on
executable files run outside of the Blitz environment.

Page 132

NoCli
Prevents the normal ‘Default Cli’ from opening when programs are executed from within
Blitz. NoCli has no effect on executable files run outside Blitz environment.

FromCLI
Returns TRUE (-1) if your program was run from CLI, or FALSE (0) if run from Workbench.

ParPath$(parameter,type)
Returns the path that the parameter resides in and ‘type’ specifies how you want the path
returned:

0 You want only the directory of the parameter returned.
1 You want the directory along with the parameter name returned.

If you passed the parameter "FRED" to your program from Workbench, and FRED resides in
the directory "work:mystuff/myprograms" then ParPath$(0,0) will return "work:mystuff/
myprograms" but ParPath$(0,1) will return "work:mystuff/myprograms/FRED".

The way Workbench handles argument passing of directories is different to that of files.
When a directory is passed as an argument, ArgsLib gets an empty string for the name, and
the directory string holds the path to the passed directory AND the directory name itself.

Page 133

R-10: SLICES

Slices are Blitz objects which are the heart of Blitz mode’s powerful graphics system.
Through the use of slices, many weird and wonderful graphical effects can be achieved,
effects not normally possible in Amiga mode. This includes such things as dual playfield
displays, smooth scrolling, double buffering and more.

A slice may be thought of as a ‘description’ of the appearance of a rectangular area of the
Amiga’s display. This description includes display mode, colour palette, sprite and bitplane
information. More than one slice may be set up at a time, allowing different areas of the
display to take on different properties.

Slices must not overlap in any way (at least two Scan lines is required between each slice).
They may not be positioned side by side.

Slice slice#,y,flags
Slice slice#,y,width,height,flags,bitplanes,sprites,colours,w1,w2
Used to create a Blitz slice object. Slices are primarily of use in Blitz mode, allowing you to
create highly customized displays.

In both forms of the Slice command, the y parameter specifies the vertical pixel position of
the top of the slice. A y value of 44 will position slices at about the top of the display.

In the first form of the Slice command, flags refers to the number of bitplanes in any
bitmaps (the bitmap’s depth) to be shown in the slice. This form of the Slice command will
normally create a lo-res slice, however this may be changed to a hi-res slice by adding
eight to the flags parameter. For instance, a flags value of four will set up a lo-res, 4
bitplane (16 colour) slice, whereas a flags value of ten will set up a hi-res, 2 bitplane (4
colour) slice. The width of a slice set up in this way will be 320 pixels for a lo-res slice, or
640 pixels for a hi-res slice. The height of a slice set up using this syntax will be 200 pixels
on an NTSC Amiga, or 256 pixels on a PAL Amiga.

The second form of the Slice command is far more versatile, albeit a little more complex.
Width and height allow you to use specific values for the slice's dimensions. These
parameters are specified in pixel amounts.

Bitplanes refers to the depth of any bitmaps you will be showing in this slice. Sprites refers
to how many sprite channels should be available in this slice. Each slice may have up to
eight sprite channels, allowing sprites to be ‘multiplexed’. This is one way to overcome the
Amiga’s ‘eight sprite limit’. It is recommended that the top-most slice be created with all 8
sprite channels, as this will prevent sprite flicker caused by unused sprites.

Colours refers to how many colour palette entries should be available for this slice, and
should not be greater than 32.

Page 134

The w1 and w2 parameters specify the width, in pixels, of any bitmaps to be shown in this
slice. If a slice is set up to be a dual-playfield slice, w1 refers to the width of the
‘foreground’ bitmap, and w2 refers to the width of the ‘background’ bitmap. If a slice is
NOT set up to be a dual-playfield slice, both w1 and w2 should be set to the same value.
These parameters allow you to show bitmaps which are wider than the slice, introducing
the ability to smooth scroll through large bitmaps. The flags parameter has been left to last
because it is the most complex.

Flags allows you control over many aspects of the slices appearance, and just what effect
the slice has. Here are some example settings for flags:

Flags Effect Max BitPlanes
$fff8 A Standard lo-res slice 6
$fff9 A Standard hi-res slice 4
$fffa A Lo-res, dual-playfield slice 6
$fffb A Hi-res, dual-playfield slice 4
$fffc A HAM slice 6

WARNING - the next bit is definitely for the more advanced users out there! Knowledge of
the following is NOT necessary to make good use of slices. Flags is actually a collection of
individual bit-flags. The bit-flags control how the slices ‘copper list’ is created. Here is a list
of the bits and their effect:

Bit# Effect
15 Create copper MOVE BPLCON0
14 Create copper MOVE BPLCON1
13 Create copper MOVE BPLCON2
12 Create copper MOVE DIWSTRT and MOVE DIWSTOP
10 Create copper MOVE DDFSTRT and MOVE DDFSTOP
8 Create copper MOVE BPL1MOD
7 Create copper MOVE BPL2MOD
4 Create a 2 line 'blank' above top of slice
3 Allow for smooth horizontal scrolling
2 HAM slice
1 Dual-playfield slice
0 Hi-res slice - default is lo-res

Clever selection of these bits allows you to create ‘minimal’ slices which may only affect
specific system registers.

Page 135

The bitplanes parameter may also be modified to specify ‘odd only’ or ‘even only’
bitplanes. This is of use when using dual playfield displays, as it allowing you to create a
mid display slice which may show a different foreground or background bitmap leaving the
other intact. To specify creation of foreground bitplanes only, simply set bit 15 of the
bitplanes parameter. To specify creation of background bitplanes only, set bit 14 of the
bitplanes parameter.

Use Slice slice#
Used to set the specified slice object as being the currently used slice. This is required tor
commands such as Show, ShowF, ShowB and Blitz mode RGB.

FreeSlices
Used to free all slices currently in use. As there is no capability to free individual slices, this
is the only means by which slices may be deleted.

Show bitmap#[,x,y]
Used to display a bitmap in the currently used slice. This slice should not be a dual-
playfield type slice. Optional x and y parameters may be used to position the bitmap at a
point other than its top-left. This is normally only of use in cases where a bitmap larger
than the slice width and/or height has been set up.

ShowF bitmap#[,x,y[,ShowB x]]
Used to display a bitmap in the foreground of the currently used slice. The slice must have
been created with the appropriate flags parameter in order to support dual-playfield
display.

Optional x and y parameters may be used to show the bitmap at a point other than its top-
left. Omitting the x and y parameters is identical to supplying values of 0. The optional
ShowB x parameter is only of use in special situations where a dual-playfield slice has
been created to display ONLY a foreground bitmap. In this case, the x offset of the
background bitmap should be specified in the ShowB x parameter.

ShowB bitmap#[,x,y[,ShowF x]]
Used to display a bitmap in the background of the currently used slice. The slice must have
been created with the appropriate flags parameter in order to support dual-playfield
display.

Page 136

Optional x and y parameters may be used to show the bitmap at a point other than its top-
left. Omitting the x and y parameters is identical to values of 0. The optional ShowF x
parameter is only of use in special situations where a dual-playfield slice has been created
to display ONLY a background bitmap. In this case, the X offset of the foreground bitmap
should be specified in the ShowF x parameter.

ColSplit colourregister,red,green,blue,y
Allows you to change any of the palette colour registers at a position relative to the top of
the currently used slice. This allows you to ‘re-use’ colour registers at different positions
down the screen to display different colours. Y specifies a vertical offset from the top of the
currently used slice.

CustomCop copin$,y
Allows advanced programmers to introduce their own copper instructions at a specified
position down the display. Copins$ refers to a string of characters equivalent to a series of
copper instructions. Y refers to a position down the display.

ShowBlitz
Redisplays the entire set up of slices. This may be necessary if you have made a quick trip
into Amiga mode, and wish to return to Blitz mode with previously created slices intact.

CopLoc
Returns the memory address of the Blitz mode copper list. All Slices, ColSplits, and
CustomCops executed are merged into a single copper list, the address of which may
found using the CopLoc function.

CopLen
Returns the length, in bytes, of the Blitz mode copper list. All Slices, ColSplits, and
CustomCops executed are merged into a single copper list, the length of which may found
using the CopLen function.

Display On|Off
This is a Blitz mode only command which allows you to ‘turn on’ or ‘turn off’ the entire
display. If the display is turned off, the display will appear as a solid block of colour 0.

Page 137

SetBPLCON0 default
This command has been added for advanced control of Slice display modes. The bits of
interest are as follows:

bit#1 ERSY external sync (for genlock enabling)
bit#2 LACE interlace mode
bit#3 LPEN light pen enable

Page 138

R-11: DISPLAY LIBRARY

The new display library is an alternative to the slice library. Instead of extending the slice
library for AGA support a completely new display library has been developed.

Besides support for extended sprites, super hires scrolling and 8 bitplane displays a more
modular method of creating displays has been implemented with the use of CopLists.
CopLists need only be initialised once at the start of the program. Displays can then be
created using any combination of CopLists. Most importantly the CreateDisplay command
does not allocate any memory avoiding any memory fragmenting problems. The new
display library is for non-AGA displays also.

To create displays the InitCopList command is used to allocate memory for what were up
till now known as Slices. A display is then created by linking one or more of these coplists
together into a single display.

With many of the new AGA modes sprite DMA has been screwed up something severe.
Those wanting to use 8 bitplanes and 8 sprites in lores will be disappointed to hear that
their displays must be modified to some 256 pixels across.

The way the Amiga fetches data for each scan line is also a little different with the AGA
machines. The effect is that displays have to be created more to the right than usual so

the system has time to fetch sprites.

InitCopList coplist#,ypos,height,type,sprites,colors,customs
Used to create a CopList for use with the CreateDisplay command. The ypos and height
parameters define the vertical section of the screen the display will take up.

Sprites, colors and customs will allocate instructions for that many sprites (always=8!)
colours (yes, as many as 256!) and custom copper instructions (which need to be allocated
to take advantage of the custom commands listed at the end of this section).

A shortened version of the InitCopList command is available that simply requires the
CopList# and the type. From the type it fills in the missing parameters. As with slices
several lines must be left between coplists when displaying more than one.

The following constants make up the type parameter, add the number of bitplanes to the
total to make up the type parameter:

Type Value
#smoothscroll $0010
#dualplayfield $0020
#extrahalfbrite $0040
#ham $0080
#lores $0000

Page 139

#hires $0100
#super $0200
#loressprites $0400
#hiressprites $0800
#supersprites $0c00
#fmode0 $0000
#fmode1 $1000
#fmode2 $2000
#fmode3 $3000
#agapalette $10000

For displays on non-AGA machines only #fmode0 and #loressprites are allowed. More
documentation, examples and fixes will be published soon for creating displays.

CreateDisplay coplist#[,coplist#...]
Used to setup a new screen display with the new display library. Any number of coplists
can be passed to CreateDisplay although at present they must be in order of vertical
position and not overlap CreateDisplay then links the coplists together using internal
pointers. bitmaps, colours and sprites attached to coplists are not affected.

DisplayBitMap coplist#,bmap[,x,y][,bmap[,x,y]]
This command is similar in usage to the slice libraries’ show commands instead of different
commands for front and back playfields and smooth scroll options there is only the one
DisplayBitMap command with various parameter options With AGA machines, the x
positioning of lores and hires coplists uses the fractional part of the x parameter for super
smooth scrolling. The coplist must be initialised with the smooth scrolling flag set if the x,y
parameters are used, same goes to dualplayfield.

DisplaySprite coplist#,sprite#,x,y,spritechannel
This is similar to the slice libraries ShowSprite command with the added advantage of
super hires positioning and extra wide sprite handling. See also SpriteMode and the usage
discussion above.

DisplayPalette coplist#,palette#[,coloroffset]
Copies colour information from a palette to the coplist specified.

Page 140

DisplayControls coplist#,BPLCON2,BPLCON3,BPLCON4
Allows access to the more remote options available in the Amiga’s display system. The
following are the most important bits from these registers (still unpublished by
Commodore!*()@GYU&^)

Default values are at top of the table, parameters are exclusive OR’d with these values. To
set all the sprite color offsets to 1 so that sprite colours are fetched from color registers
240...255 instead of 16...31 we would use the parameters:

DisplayControls 0,0,0,$ee

Bit# BPLCON2 BPLCON3 BPLCON4
($224) ($c00) ($11)

15 * BANK2 *active colour bank BPLAM7 ;xor with bitplane
14 ZDBPSEL2 BANK1 * BPLAM6 ;DMA altering
13 ZDBPSEL1 BANK0 * BPLAM5 ;effective colour
12 ZDBPSEL0 PF20F2 colourffset playfield 2 BPLAM4 ;look up
11 ZDBPEN PF20F1 BPLAM3
10 ZDCTEN PF20F0 BPLAM2
09 KILLEHB * LOCT *palette hi/lo nibble BPLAM1
08 RDRAM=0 * BPLAM0
07 SOGEN SPRESI *sprite res ESPRM7 high order colour
06 PF2PRI H SPRES0 * ESPRM6 offset tor even
05 PF2P2 BRDRBLANK border ESPRM5 sprites
04 PF2P1 BRDNTRAN zd=border ESPRM4
03 PFIP0 OSPRM7 hiorder colour
02 PFIP2 ZDCLCKEN zd=14mhz OSPRM6 offset for odd
01 PFIPI BRDSPRT sprites in borders! OSPRM5 sprites
00 PFIPO EXTBLKEN blank output? OSPRM4

! = Don't touch
H = See standard hardware reference manual
* = controlled by display library
ZD = any reference to ZD is only a guess (just sold my genlock)

Page 141

DisplayAdjust coplist#,fetchwid,ddfstrt,ddfstop,diwstrt,diwstop
Temporary control of display registers until I get the width adjust parameter working with
InitCopList. Currently only standard width displays are available but you can modify the
width manually (just stick a screwdriver in the back of your 1084) or with some knowledge
of Commodore’s AGA circuitry. Ha ha ha! No, to be quite serious I really do not have a clue
how they cludged up the Amiga chip set. When ECS was introduced suddenly all display
fetching moved to the right. Now they seem to have done the same to sprites so it is near
impossible to have them all going without limiting yourself to a seriously thin display.

If you hack around with the system copperlists you’ll find they actually change fetch modes
as you scroll a viewport across the display and Commodore say you should not use sprites
anyway so as to be compatible with their new hardware which is rumoured to run
WindowsNT, yipeee. By then we will be hopefully shipping the Jaguar lib for Blitz.

CustomColors coplist#,ccoffset,ypos,palette,startcol,numcols
Using the custom copper space in a display, CustomColors will alter the displays palette at
the given ypos. The number of custom cops required is either 2+numcols for ECS displays
and 2+n+n+n/16 for AGA displays. In AGA, numcols must be a multiple of 32.

Note: Large AGA palette changes may take several lines of the display to be complete.

CustomString coplist#,ccoffset,ypos,copper$
Allows the user to insert their own copper commands (contained in a string) into the
display’s copper list at a given vertical position. The amount of space required is equal to
the number of copper instructions in copper$ (length of string divide by 4) plus 2 which of
course have to be allocated with InitCopList before CustomString is used.

CustomSprites coplist#,ccoffset,ypos,numsprites
Inserts a copper list that reinitialises the sprites hardware at a certain vertical position in
the display. These lower sprites are assigned sprite numbers of 8...15. CustomCops
required = 4 x numsprites + 2

DisplayDblScan mode
Used to divide the vertical resolution of the display by 2,4,8 or 16 using Modes 1,2,3 and 4.
This is most useful for fast bitmap based zooms. A mode of 0 will return the display to
100% magnification.

As with the DisplayRainbow, DisplayRGB, DisplayUser and DisplayScroll commands
DisplayDblScan uses the new line by line copper control of the display library. To initialise
this mode a negative parameter is used in the CustomCops parameter of the InitCopList
command. DisplayDblScan requires 2 copper instructions per line (make CustomCops=-2).

Page 142

DisplayRainbow coplist#,register,palette[,copoffset]
Used to alter a certain colour register vertically down a display. It simple maps each colour
in a palette to the corresponding vertical position of display. ECS displays require one
copper instruction per line while AGA displays require 4.

DisplayRGB coplist#,register,line,r,g,b[,copoffset]
This is a single line version of DisplayRainbow allowing the programmer to alter any
register of any particular line. As with DisplayRainbow ECS displays require 1 copper
instruction while AGA requires 4.

DisplayUser coplist#,line,string[,offset]
Allows the programmer to use their own copper$ at any line of the display. Of course
copper instructions have to be allocated with the number of copper instructions in the
InitCoplist multiplied by -1.

DisplayScroll coplist#,&xpos.q(n),&xpos.q(n)[,offset]
Allows the program to dynamically display any part of a bitmap on any line of the display.
DisplayScroll should always follow the DisplayBitMap command. The parameters are two
arrays holding a list of xoffsets that represent the difference in horizontal position from the
line above. AGA machines are able to use the fractional part of each entry for super hi
resolution positioning of the bitmap. Three instructions per line are required for the
DisplayScroll command.

Page 143

R-12: BLITZ MODE I/O

This sections refers to various Input/Output commands available in Blitz mode.

It should be noted that although the Joyx, Joyy, Joyr, and Joyb functions do not appear
here, they are still available in Blitz mode (yes your honour).

BlitzKeys On|Off
Used to turn on or off Blitz mode keyboard reading. If Blitz mode keyboard reading is
enabled, the Inkey$ function may be used to gain information about keystrokes in Blitz
mode.

BlitzQualifier
Returns any qualifier keys that were held down in combination with the last Inkey$ during
BlitzMode input.

BlitzRepeat delay,speed
Allows you to determine key repeat characteristics in Blitz mode. Delay specifies the
amount of time, in fiftieths of a second, before a key will start repeating. Speed specifies
the amount of time, again in fiftieths of a second, between repeats of a key once it has
started repeating.

BlitzRepeat is only effective when the Blitz mode keyboard reading is enabled. This is done
using the BlitzKeys command.

RawStatus (Rawkey)
This function can be used to determine if an individual key is being held down or not.
Rawkey is the rawcode of the key to check for. If the specified key is being held down, a
value of -1 will be returned. If the specified key is not being held down, a value of zero will
be returned.

RawStatus is only available if Blitz mode keyboard reading has been enabled. This is done
using the BlitzKeys command.

Mouse On|Off
Turns on or off Blitz mode’s ability to read the mouse. Once a Mouse On command has
been executed, programs can read the mouse’s position or speed in Blitz mode.

Page 144

Pointer sprite#,spritechannel
Allows you to attach a sprite object to the mouse’s position in the currently used slice in
Blitz mode.

To properly attach a sprite to mouse position, several commands must be executed in the
correct sequence. First, a sprite must be created using the LoadShape and GetaSprite
sequence of commands. Then, a slice must be created to display the sprite in. A Mouse On
must then be executed to enable mouse reading.

MouseArea minx,miny,maxx,maxy
Allows you to limit Blitz mode mouse movement to a rectangular section of the display.
Minx and miny define the top left corner of the area, maxx and maxy define the lower right
corner.

MouseArea defaults to an area from 0,0 to 320,200.

MouseX
If Blitz mode mouse reading has been enabled using a Mouse On command, the MouseX
function may be used to find the current horizontal location of the mouse. If mouse reading
is enabled, the mouse position will be updated every fiftieth of a second, regardless of
whether or not a mouse pointer sprite is attached.

MouseY
If Blitz mode mouse reading has been enabled using Mouse On command, the MouseY
function may be used to find the current vertical location of the mouse. If mouse reading is
enabled, the mouse position will be updated every fiftieth of a second, regardless of
whether or not a mouse pointer sprite is attached.

MouseXSpeed
If Blitz mode mouse reading has been enabled using a Mouse On command, the
MouseXSpeed function may be used to find the current horizontal speed of mouse
movement, regardless of whether or not a sprite is attached to the mouse.

If MouseXSpeed returns a negative value, then the mouse has been moved to the left. If a
positive value is returned, the mouse has been moved to the right. MouseXSpeed only has
relevance after every vertical blank. Therefore, MouseXSpeed should only be used after a
VWait has been executed or during a vertical blank interrupt.

Page 145

MouseYSpeed
If Blitz mode mouse reading has been enabled using a Mouse On command, the
MouseYSpeed function may be used to find the current vertical speed of mouse movement,
regardless of whether or not a sprite is attached to the mouse.

If MouseYSpeed returns a negative value, then the mouse has been moved upwards. If a
positive value is returned, the mouse has been moved downwards.

MouseYSpeed only has relevance after every vertical blank. Therefore, MouseYSpeed
should only be used after a VWait has been executed or during a vertical blank interrupt.

LoadBlitzFont blitzfont#,fontname.font$
Creates a blitzfont object. Blitzfonts are used in the rendering of text to bitmaps. Normally,
the standard ROM resident Topaz font is used to render text to bitmaps. However, you may
use LocalBlitzFont to select a font of your choice for bitmap output.

The specified Fontname.font$ parameter specifies the name of the font to load, which
MUST be in your FONTS: directory.

LoadBlitzFont may only be used to load 8x8 non-proportional fonts.

Use BlitzFont blitzfont#
If you have loaded two or more blitzfont objects using LoadBlitzFont, UseBlitzFont may be
used to select one of these fonts for future bitmap output.

Free BlitzFont blitzfont#
This ‘unloads’ a previously loaded blitzfont object. This frees up any memory occupied by
the font.

BitMapOutput bitmap#
May be used to redirect Print statements to be rendered onto a bitmap. The font used for
rendering may be altered using LoadBlitzFont.

Fonts used for bitmap output must be 8x8 non-proportional fonts. BitMapOutput is mainly
of use in Blitz mode as other forms of character output become unavailable in Blitz mode.

Colour fgcolour[,bgcolour]
Allows you to alter the colours use to render text to bitmaps. The parameter fgcolour
allows you to specify the colour text is rendered in, and the optional bgcolour parameter
allows you to specify the colour of the text background.

Page 146

The palette used to access these colours will depend upon whether you are in Blitz mode
or in Amiga mode. In Blitz mode, colours will come from the palette of the currently used
slice. In Amiga mode, colours will come from the palette of the screen the bitmap is
attached to.

Locate x,y
If you are using BitMapOutput to render text, Locate allows you to specify the cursor
position at which characters are rendered.

X specifies a character position across the bitmap, and is always rounded down to a
multiple of an eighth.

Y specifies a character position down the bitmap, and may be a fractional value. For
example, a Y of 1.5 will set a cursor position one and a half characters down from the top of
the bitmap.

CursX
When using BitMapOutput to render text to a bitmap, CursX may be used to find the
horizontal character position at which the next character Printed will appear. CursX will
reflect the cursor position of the bitmap specified in the most recently executed
BitMapOutput statement.

CursY
When using BitMapOutput to render text to a bitmap, CursY may be used to find the vertical
character position at which the next character Printed will appear. CursY will reflect the
cursor position of the bitmap specified in the most recently executed BitMapOutput
statement.

BitMapInput
This is a special command designed to allow you to use Edit$ and Edit in Blitz mode. To
work properly, a BlitzKeys On must have been executed before BitMapInput. BitMapOutput
must be executed before any Edit$ or Edit commands are encountered.

Page 147

R-13: BITMAPS

Blitz bitmap objects are used primarily for the purpose of rendering graphics. Most
commands in Blitz for generating graphics (excluding the Window and Sprite commands)
depend upon a currently used bitmap.

Bitmap objects may be created in one of two ways. A bitmap may be created by using the
BitMap command, or a bitmap may be ‘borrowed’ from a screen using the ScreensBitMap
command.

Bitmaps have three main properties. They have a width, a height and a depth. If a bitmap is
created using the ScreensBitMap command, these properties are taken from the
dimensions of the screen. If a bitmap is created using the BitMap command, these
properties must be specified.

BitMap bitmap#,width,height,depth
Creates and initialises a bitmap object. Once created, the specified bitmap becomes the
currently used bitmap. Width and height specify the size of the bitmap. Depth specifies
how many colours may be drawn onto the bitmap, and may be in the range one through six.
The actual colours available on a bitmap can be calculated using 2^depth. For example, a
bitmap of depth three allows for 2^3 or eight colours.

Use BitMap bitmap#
Defines the specified bitmap object as being the currently used bitmap. This is necessary
for commands, such as Blit, which require the presence of a currently used bitmap.

Free BitMap bitmap#
Erases all information connected to the specified bitmap. Any memory occupied by the
bitmap is also deallocated. Once free’d, a bitmap may no longer be used.

CopyBitMap bitmap#,bitmap#
Makes an exact copy of a bitmap object into another bitmap object. The first bitmap#
parameter specifies the source bitmap for the copy, the second bitmap# the destination.

Any graphics rendered onto the source bitmap will also be copied.

Page 148

ScreensBitMap screen#,bitmap#
Allows you the option of attaching a bitmap object to any Intuition screens you open. If you
open a screen without attaching a bitmap, a bitmap will be created anyway. You may then
find this bitmap using the ScreensBitMap command. Once ScreensBitMap is executed, the
specified bitmap becomes the currently used bitmap.

LoadBitMap bitmap#,filename$[,palette#]
Allows you to load an ILBM IFF graphic into a previously initialised bitmap object. You may
optionally load in the graphics’s colour palette into a palette object specified by palette#.
An error will be generated if the specified filename$ is not in the correct IFF format.

SaveBitmap bitmap#,filename$[,palette#]
Allows you to save a bitmap to disk in ILBM IFF format. An optional palette may also be
saved with the IFF.

BitPlanesBitMap srcbitmap,destbitmap,planepick
Creates a ‘dummy’ bitmap from the srcbitmap with only the bitplanes specified by the
planepick mask. This is useful for shadow effects etc. where blitting speed can be speed
up because of the fewer bitplanes involved.

ShapesBitMap shape#,bitmap#
Creates a dummy bitmap so drawing commands can be used directly on a shape’s image
data.

CludgeBitMap bitmap#,width,height,depth,memory
Creates a bitmap object with the proportions for that specified using the memory location
given. Of course, the memory location specified must be in chipmem and it is upto the user
to ensure that sufficient memory has been allocated. This command is most useful for
games where memory fragmentation can be a big problem, by allocating one block of
memory on program initialisation for all bitmaps CludgeBitMap can be used so that
creating and freeing of bitmaps is not necessary.

BitMapWindow srcbitmap#,destbitmap#,x,y,w,h
Creates a dummy bitmap inside another bitmap. Both x and w parameters are rounded to
the nearest 16 pixel boundary. Any rendering, printing and blitting to the new bitmap will
be clipped inside the area used.

Page 149

BitMapOrigin bitmap#,x,y
Allows the programmer to relocate the origin (0,0) of the bitmap used by the drawing
commands line, poly, box and circle.

DecodeILBM bitmap#,sourceaddr
A very fast method of unpacking standard IFF ILBM data to a bitmap. Not only does this
command allow a faster method of loading standard IFF files but allows the programmer to
"IncBin" IFF pictures in their programs. See the discussion above for using DecodeILBM on
both files and included memory.

If you do plan on using this command to include images in your program, you’ll need to
reference the label with the ‘?’ character, like this:

DecodeILBM 0,?img0
;more of the program
img0: IncBin “data/0.iff”

The image will be unpacked at thje top-left (0,0) of your bitmap. If you want to position it,
you’ll first need to grab it and you can then blit it wherever you want inside a bitmap:

BitMap 1,14,24,5 ;Create a bitmap the same size as our IFF file
DecodeILBM 1,?img0 ;Decode the data to a bitmap
Blit 0,50,50 ;Blit it at 50,50 on the screen (bitmap 0)
img0: IncBin “data/0.iff”

Note: You can also use ILBMGrab command which also extracts the palette.

ILBMGrab sourceaddr,bitmap#,palette#
Works in much the same way as DecodeILBM except this will also extract the palette of the
IFF ILBM file as well.

BitMap 0,320,256,5
Screen 0,0,0,320,256,5,0,”Picture Test”,0,1
ILBMGrab ?tigerpic,0,0
ShowBitMap 0
ShowPalette 0
MouseWait
End
titlepic: IncBin “data/tiger01.iff”

Page 150

R-14: 2D DRAWING

This section covers all commands related to rendering arbitrary graphics to bitmaps All
commands perform clipping - that is, they all allow you to draw ‘outside’ the edges of
bitmaps without grievous bodily harm being done to the Amiga’s memory.

Cls [colour]
Allows you to fill the currently used bitmap with the colour specified by the colour
parameter. If colour is omitted, the currently used bitmap will be filled with colour 0. A
colour parameter of -1 will cause the entire bitmap to be ‘inverted’.

Plot x,y,colour
Used to alter the colour of an individual pixel on the currently used bitmap. The parameters
x and y specify the location of the pixel to be altered and colour specifies the colour to
change the pixel to. A parameter of -1 for colour will cause the pixel at the specified pixel
position to be ‘inverted’.

Point(x,y)
Return the colour of a particular pixel in the currently used bitmap. The pixel to be
examined is specified by the x and y parameters If x and y specify a point outside the
edges of the bitmap, a value of -1 will be returned.

Line [x1,y1,]x2,y2,colour
Draws a line connecting two pixels onto the currently used bitmap. The x and y parameters
specify the pixels to be joined and colour specifies the colour to draw the line in. If x1 and
y1 are omitted then the end points (x2,y2) of the last line drawn will be used. A colour
parameter of -1 will cause an ‘inverted’ line to be drawn.

Box x1,y1,x2,y2,colour
Draws a rectangular outline onto the currently used bitmap. Paremeters x1, y1, x2 and y2
specify two corners of the box to be drawn. Colour refers to the colour to draw the box in. A
colour parameter of -1 will cause an ‘inverted’ box to be drawn.

Boxf x1,y1,x2,y2,colour
Draws a solid rectangular shape on the currently used bitmap. Paremeters x1,y1,x2 and y2
refer to two corners of the box. Colour specifies the colour to draw the box in. A colour
parameter of -1 will cause the rectangular area to be ‘inverted’.

Page 151

Circle x,y,radius[,yradius],colour
Draws an open circle onto the currently used bitmap. Paremeters x and y specify the mid
point of the circle. The radius parameter specifies the radius of the circle. If a yradius
parameter is supplied, then an ellipse may be drawn. A colour parameter of -1 will cause
an ‘inverted’ circle to be drawn.

Circlef x,y,radius[,yradius],colour
Circlef will draw a filled circle onto the currently used bitmap. Parameters x and y specify
the mid point of the circle and colour, the colour in which to draw the circle. The radius
parameter specifies the radius of the circle. If a yradius parameter is supplied, then an
ellipse may be drawn.

A colour parameter of - 1 will cause an ‘inverted’ circle to be drawn.

Scroll x1,y1,width,height,x2,y2[,srcbitmap]
Allows rectangular areas within a bitmap to be moved around. Paremeters x1, y1, width
and height specify the position and size of the rectangle to be moved. Paremeters x2 and
y2 specify the position the rectangle is to be moved to.

An optional srcbitmap parameter allows you to move rectangular areas from one bitmap to
another.

FloodFill x,y,colour[,bordercolour]
Will ‘colour in’ a region of the screen starting at the coordinates x,y. The first mode will fill
all the region that is currently the colour at the coordinates x,y with the colour specified by
colour. The second mode will fill a region starting at x,y and surrounded by the
bordercolour with colour.

FreeFill
Deallocates the memory that Blitz uses to execute the commands Circlef, FloodFill, ReMap
and Boxf.

Blitz uses a single monochrome bitmap the size of the bitmap being drawn to do its filled
routines, by using the FreeFill command this bitmap can be ‘freed’ up if no more filled
commands are to be executed.

ReMap colour#0,colour#1[,bitmap]
Used to change all the pixels on a bitmap in one colour to another colour. The optional
bitmap parameter will copy all the pixels in colour#0 to their new colour on the new
bitmap.

Page 152

Poly numpoints,*coords.w,colour
Poly is a bitmap based commands such as Box and Line. It draws a polygon using
coordinates from an array or newtype of words.

Polyf numpoints,*coords.w,color[,color2]
Same as Poly except Polyf draws filled polygons and has an optional parameter color2. If
used this colour will be used if the coordinates are listed in anti-clockwise order, useful for
3D type applications. If color2=-1 then the polygon is not drawn if the vertices are listed in
anti-clockwise order.

Page 153

R-15: ANIMATION SUPPORT

The following four commands allow the display of standard IFF animations in Blitz. The
animation must be compatible with the DPaint 3 format, this method uses long delta (type
2) compression and does not include any palette changes.

Anims in nature use a double buffered display, with the addition of the ShowBitMap
command to Blitz we can now display (play) anims in both Blitz and Amiga modes. An anim
consists of an initial frame which needs to be displayed (rendered) using the InitAnim
command, subsequent frames are then played by using the NextFrame command. The
Frames() function returns the number of frames of an anim.

We have also extended the LoadShape command to support anim brushes.

LoadAnim anim#,filename$[,palette#]
This will create an anim object and load a DPaint compatible animation. The ILBMInfo
command can be used to find the correct screen size and resolution for the anim file. The
optional palette# parameter can be used to load a palette with the anims correct colours.

InitAnim anim#[,bitmap#]
Renders the first two frames of the anim onto the current bitmap and the bitmap specified
by the second parameter. The second bitmap# parameter is optional, this is to support
anims that are not in a double-buffered format (each frame is a delta of the last frame not
from two frames ago). However, the two parameter double buffered form of InitAnim
should always be used. (hmmm don't ask me O.K.!)

NextFrame anim#
Renders the next frame of an anim to the current bitmap. If the last frame of an anim has
been rendered NextFrame will loop back to the start of the animation.

Frames(anim#)
Returns the number of frames in the specified anim.

Page 154

R-16: SHAPE HANDLING

Shape objects are used for the purpose of storing graphic images. These images may be
used in a variety of ways. For example, a shape may be used as the graphics for a gadget,
or as the graphics for a menu item or perhaps an alien being bent on your destruction.

See the Blitting section for the many commands that are available for the purpose of
drawing shapes onto bitmaps. These commands use the Amiga’s blitter chip to achieve
this, and are therefore very fast.

Note that Blitz supports two different file formats for storage of shapes. Standard IFF
brush files (such as created with DPaint) as well as anim brushes use the
LoadShape/SaveShape commands and the faster Blitz format uses the LoadShapes and
SaveShapes format.

LoadShape shape#,filename$[,palette#]
Allows you to load an ILBM IFF file into a shape object. The optional palette# parameter
lets you also load the colour information contained in the file into a palette object.

This command has now been extended to support anim brushes. If the file is an anim
brush the shapes are loaded into consecutive shapes starting with the shape# provided.

SaveShape shape#,filename$,palette#
Creates an ILBM IFF file based on the specified shape object. If you want the file to contain
colour information, you should also specify a palette object using the palette# parameter.

LoadShapes shape#[,shape#],filename$
Lets you load a ‘range’ of shapes from disk into a series of shape objects. The file specified
by filename$ should have been created using SaveShapes command.

The first shape# parameter specifies the number of the first shape object to be loaded.
Further shapes will be loaded into increasingly higher shape objects.

If a second shape# parameter is supplied, then only shapes up to and including the
second shape# value will be loaded. If there are not enough shapes in the file to fill this
range, any excess shapes will remain untouched.

SaveShapes shape#,shape#,filename$
Allows you to create a file containing a range of shape objects. This file may be later loaded
using the LoadShapes command.

Page 155

The range of shapes to be saved is specified by shape#,shape#, where the first shape#
refers to the lowest shape to be saved and the second shape# the highest.

GetaShape shape#,x,y,width,height
Lets you transfer a rectangular area of the currently used bitmap into the specified shape
object. Paremeters x, y, width and height specify the area of the bitmap to be picked up
and used as a shape.

CopyShape shape#,shape#
Produces an exact copy of one shape object in another shape object. The first shape#
specifies the source shape for the copy, the second specifies the destination shape.

CopyShape is often used when you require two copies of a shape in order to manipulate
(using, for example, XFlip) one of them.

AutoCookie On|Off
When shapes objects are used by any of the blitting routines (for example Blit), they usually
require the presence of what is known as a ‘cookiecut’. These cookiecuts are used for
internal purposes by the various blitting commands, and in no way affect the appearance
or properties of a shape. They consume some of your valuable chip mem.

When a shape is created (for example, by using LoadShape or GetaShape), a cookiecut is
automatically made for it. However, this feature may be turned off by executing an
AutoCookie Off command.

This is a good idea if you are not going to be using shapes for blitting - for example, shapes
used for gadgets or menus.

MakeCookie shape#
Allows you to create a ‘cookiecut’ for an individual shape. Cookiecuts are necessary for
shapes which are to be used by the various blitting commands (for example QBlit), and are
normally made automatically whenever a shape is created (for example using LoadShape).
However, use of the AutoCookie command may mean you end up with a shape which has
no cookiecut, but which you wish to blit at some stage.

You can then use MakeCookie to make a cookiecut for this shape.

ShapeWidth(shape#)
Returns the width, in pixels, of a previously created shape object.

Page 156

ShapeHeight(shape#)
Returns the height, in pixels,of a previously created shape object.

Handle shape#,x,y
All shapes have an associated ‘handle’. A shape’s handle refers to an offset from the upper
left of the shape to be used when calculating a shapes position when it gets blitted to a
bitmap. This is also often referred to as a ‘hot spot’.

The x parameter specifies the horizontal offset for a handle, the y parameter specifies a
vertical offset.

Let’s have a look at an example of how a handle works. Assume you have set a shape’s x
handle to 5, and its y handle to 10. Now let’s say we blit the shape onto a bitmap at pixel
position 160,100. The handle will cause the upper left corner of the shape to end up at
155,90, while the point within the shape at 5,10 will end up at 160,100.

When a shape is created, its handle is automatically set to 0,0 - its upper left corner.

MidHandle shape#
Causes the handle of the specified shape to be set to its centre. For example, these two
commands achieve exactly the same result:

MidHandle 0
Handle 0,ShapeWidth(0)/2,ShapeHeight(0)/2

For more information on handles, please refer to the Handle command.

XFlip shape#
One of Blitz’s powerful shape manipulation commands. XFlip will horizontally ‘mirror’ a
shape object, causing the object to be ‘turned back to front’.

YFlip shape#
Used to vertically ‘mirror’ a shape object. The resultant shape will appear to have been
‘turned upside down’.

Scale shape#,xratio,yratio[,palette#]
This is a very powerful command which may be used to ‘stretch’ or ‘shrink’ shape objects.
The xratio and yratio parameters specify how much stretching or shrinking to perform. A
ratio greater than one will cause the shape to be stretched (enlarged), while a ratio of less
than one will cause the shape to be shrunk (reduced). A ratio of exactly one will cause no
change in the shape’s relevant dimension.

Page 157

As there are separate ratio parameters for both x and y, a shape may be stretched along
one axis and shrunk along the other!

The optional Palette# parameter allows you to specify a palette object for use in the
scaling operation. If a Palette# is supplied, the scale command will use a ‘brightest pixel’
method of shrinking. This means a shape may be shrunk to a small size without detail
being lost.

Rotate shape#,angleratio
Allows you to rotate a shape object. The angleratio specifies how much clockwise rotation
to apply, and should be in the range zero to one. For instance, a value of .5 will cause a
shape to be rotated 180 degrees, while a value of .25 will cause a shape to be rotated 90
degrees clockwise.

DecodeShapes shape#[,shape#],memorylocation
Similar to DecodeMedModule, ensures the data is in chip and then configures the shape
object(s) to point to the data.

InitShape shape#,width,height,depth
Has been added to simple create blank shape objects. Programmers who make a habit of
using ShapesBitMap to render graphics to a shape object will appreciate this one for sure.

Page 158

R-17: BLITTING

The process of putting a shape onto a bitmap using the blitter is often referred to as
‘blitting’ a shape. The speed at which a shape is blitted is important when you are writing
animation routines, as the smoothness of any animation will be directly affected by how
long it takes to draw the shapes involved in the animation.

The two main factors which affect the speed at which a shape is blitted are its size and the
technique used to actually blit the shape.

This section will cover all commands which allow you to draw shapes onto bitmaps using
the Amiga’s ‘blitter’ chip.

Blit shape#,x,y[,excessonoff]
The simplest of all the blitting commands. Blit will simply draw a shape object onto the
currently used bitmap at the pixel position specified by x,y. The shape’s handle, if any, will
be taken into account when positioning the blit.

The optional excessonoff parameter only comes into use if you are blitting a shape which
has less bitplanes (colours) than the bitmap to which it is being blitted. In this case,
excessonoff allows you to specify an on/off value for the excess bitplanes – ie, the
bitplanes beyond those altered by the shape. Bit zero of excessonoff will specify an on/off
value for the first excess bitplane, bit one an on/off value for the second excess bitplane
and so on.

The manner in which the shape is drawn onto the bitmap may be altered by use of the
BlitMode command.

BlitMode bltcon0
Allows you to specify just how the Blit command uses the blitter when drawing shapes to
bitmaps. By default, BlitMode is set to a ‘CookieMode’ which simply draws shapes ‘as is’.
However, this mode may be altered to produce other useful ways of drawing. Here are just
some of the possible BLTCON0 parameters:

CookieMode: Shapes are drawn ‘as is’.
EraseMode: An area the size and shape of the shape will be ‘erased’ on the

destination bitmap.
InvMode: An area the size and shape of the shape will be inverted on the

destination bitmap.
SolidMode: The shape will be drawn as a solid area of one colour.

Page 159

Actually, these modes are all just special functions which return a useful value. Advanced
programmers may be interested to know that the BLTCON0 parameter is used by the Blit
command’s blitter routine to determine the blitter MINITERM and CHANNEL USE flags. Bits
zero through seven specify the miniterm, and bits eight through eleven specify which of the
blitter channels are used. For the curious out there, all the blitter routines in Blitz assume
the following blitter channel setup:

BlitterChannel Used For
A Pointer to shape's cookie cut
B Pointer to shape data
C Pointer to destination
D Pointer to destination

CookieMode
This function returns a value which may be used by one of the commands involved in
blitting modes.

Using CookieMode as a blitting mode will cause a shape to be blitted cleanly, or ‘as is’, onto
a bitmap.

EraseMode
This function returns a value which may be used by one the commands involved in blitting
modes.

Using EraseMode as a blitting mode will cause a blitted shape to erase a section of a
bitmap corresponding to the outline of the shape.

InvMode
This function returns a value which may be used by one the commands involved in blitting
modes.

Using InvMode as a blitting mode will cause a shape to ‘invert’ a section of a bitmap
corresponding to the outline of the blitted shape.

SolidMode
The SolidMode function returns a value which may be used by one the commands involved
in blitting modes.

Using SolidMode as a blitting mode will cause a shape to overwrite a section of a bitmap
corresponding to the outline of the blitted shape.

Page 160

Queue queue#,maxitems
Creates a queue object for use with the QBlit and UnQueue commands. What is a queue?
Well, queues (in the Blitz sense) are used for the purpose of multi-shape animation. Before
going into what a queue is, let’s have a quick look at the basics of animation.

Say you want to get a group of objects flying around the screen. To achieve this, you will
have to construct a loop similar to the following:

Step 1: Start at the first object
Step 2: Erase the object from the display
Step 3: Move the object
Step 4: Draw the object at its new location on the display
Step 5: If there are any more objects to move, move on to the next object and then go

 to Step 2, else...
Step 6: Go to step 1

Step 2 is very important, as if it is left out, all the objects will leave trails behind them!
However, it is often very cumbersome to have to erase every object you wish to move. This
is where queues are of use.

Using queues, you can ‘remember’ all the objects drawn through a loop, then, at the end of
the loop (or at the start of the next loop), erase all the objects ‘remembered’ from the
previous loop. Look at how this works:

Step 1: Erase all objects remembered in the queue
Step 2: Start at the first object
Step 3: Move the object
Step 4: Draw the object at its new location, and add it to the end of the queue
Step 5: If there are any objects left to move, go on to the next object, then go to

 step 3; else…
Step 6: Go to step 1

This is achieved quite easily using Blitz’s queue system. The UnQueue command performs
step 1, and the QBlit command performs step 4.

Queues purpose is to initialise the actual queue used to remember objects in. Queue must
be told the maximum number of items the queue is capable of remembering, which is
specified in the maxitems parameter.

Page 161

QBlit queue#,shape#,x,y[,excessonoff]
Performs similarly to Blit, and is also used to draw a shape onto the currently used bitmap.
Where QBlit differs, however, is in that it also remembers (using a queue) where the shape
was drawn, and how big it was. This allows a later UnQueue command to erase the drawn
shape.

The optional excessonoff parameter works identically to the excessonoff parameter used
by the Blit command.

UnQueue queue#[,bitmap#]
Used to erase all ‘remembered’ items in a queue. Items are placed in a queue by use of the
QBlit command.

An optional bitmap# parameter may be supplied to cause items to be erased by way of
‘replacement’ from another bitmap, as opposed to the normal ‘zeroing out’ erasing.

FlushQueue queue#
Will force the specified queue object to be ‘emptied’, causing the next UnQueue command
to have no effect.

QBlitMode BLTCON0
Allows you to control how the blitter operates when QBlitting shapes to bitmaps.

Buffer buffer#,memorylen
Used to create a buffer object. Buffers are similar to queues in concept, but operate slightly
differently. If you have not yet read the description of the Queue command, it would be a
good idea to do so before continuing here.

The buffer related commands are very similar to the queue related commands – Buffer,
BBlit, and UnBuffer, and are used in exactly the same way. Where buffers differ from
queues, however, is in their ability to preserve background graphics. Whereas an UnQueue
command normally trashes any background graphics, UnBuffer will politely restore
whatever the BBlits may have overwritten. This is achieved by the BBlit command actually
performing two blits.

The first blit transfers the area on the bitmap which the shape is about to cover to a
temporary storage area - the second blit actually draws the shape onto the bitmap. When
the time comes to UnBuffer all those BBlits, the temporary storage areas will be
transferred back to the disrupted bitmap.

Page 162

The memorylen parameter of this command refers to how much memory, in bytes, should
be put aside as temporary storage for the preservation of background graphics. The value
of this parameter varies depending upon the size of shapes to be blitted, and the maximum
number of shapes to be blitted between UnBuffers. A memorylen of 16384 should be
plenty for most situations, but may need to be increased if you start getting ‘Buffer
Overflow’ error messages.

BBlit buffer#,shape#,x,y[,excessonoff]
The BBlit command is used to draw a shape onto the currently used bitmap, and preserve
the overwritten area into a previously initialised buffer.

The optional excessonoff parameter works identically to the excessonoff parameter used
by the Blit command.

UnBuffer buffer#
Used to ‘replace’ areas on a bitmap overwritten by a series of BBlit commands. For more
information on buffers, please refer to the Buffer command.

FlushBuffer buffer#
Will force the specified buffer object to be ‘emptied’, causing the next UnBuffer command
to have no effect.

BBlitMode bltcon0
Allows you to control how the blitter operates when BBlitting shapes to bitmaps.

Stencil stencil#,bitmap#
Creates a stencil object based on the contents of a previously created bitmap. The stencil
will contain information based on all graphics contained in the bitmap, and may be used
with the SBlit and ShowStencil commands.

SBlit stencil#,shape#,x,y[,excessonoff]
Works identically to the Blit command, and also updates the specified stencil#. This is an
easy way to render ‘foreground’ graphics to a bitmap.

SBlitMode bltcon0
Used to determine how the SBlit command operates. Please refer to the BlitMode
command tor more information on blitting modes.

Page 163

ShowStencil buffer#,stencil#
Used in connection with BBlits and stencil objects to produce a ‘stencil’ effect. Stencils
allow you create the effect of shapes moving ‘between’ background and foreground
graphics. Used properly, stencils can add a sense of ‘depth’ or ‘three dimensionality’ to
animations.

So what steps are involved in using stencils? To begin with, you need both a bitmap and a
stencil object. A stencil object is similar to a bitmap in that it contains various graphics.
Stencils differ, however, in that they contain no colour information. They simply determine
where graphics are placed on the stencil. The graphics on a stencil usually correspond to
the graphics representing ‘foreground’ scenery on a bitmap.

So the first step is to set up a bitmap with both foreground and background scenery on it.
Next, a stencil is set up with only the foreground scenery on it. This may be done using
either the Stencil or SBlit command. Now, we BBlit our shapes. This will, of course, place
all the shapes in front of both the background and the foreground graphics. However, once
all shapes have been blitted, executing the ShowStencil command will repair the damage
done to the foreground graphics!

Block shape#,x,y
An extremely fast version of the Blit command with some restrictions. Block should only be
used with shapes that are 16,32,48,64...pixels wide and that are being blitted to an x
position of 0,16,32,48,64...

Note: the height and y destination of the shape are not limited by the Block command.
Block is intended tor use with map type displays.

BlitColl(shape#,x,y)
A fast way of collision detection when blitting shapes. BlitColl returns -1 if a collision
occurs, 0 if no collision. A collision occurs if any pixel on the current bitmap is non zero
where your shape would have been blitted.

ShapesHit is faster but less accurate as it checks only the rectangular area of each shape,
where as BlitColl takes into account the shape of the shape and of course can not tell you
what shape you have collided with.

ClipBlit clipblit shape#,x,y
Same as the Blit command except ClipBlit will clip the shape to the inside of the used
bitmap, all blit commands in Blitz are due to be expanded with this feature.

Page 164

ClipBlitMode bplcon0
Same as BlitMode except applies to the ClipBlit command. Another oversight now fixed.

BlockScroll x1,y1,width,height,x2,y2[,bitmap#]
Same as the Scroll command except that BlockScroll is much faster but only works with 16
bit aligned areas. This means that x1, y2 and width must all be multiples of 16. Useful for
block scrolling routines that render the same blocks to both sides of the display, the
programmer can now choose to render just one set and then copy the result to the other
side with the BlockScroll command.

Page 165

R-18: SPRITE HANDLING

Sprites are another way of producing moving objects on the Amiga’s display. Sprites are,
like shapes, graphical objects. However unlike shapes, sprites are handled by the Amiga’s
hardware completely separately from bitmaps. This means that sprites do not have to be
erased when its time to move them, and that sprites in no way destroy or interfere with
bitmap graphics. Also, once a sprite has been displayed, it need not be referenced again
until it has to be moved.

In this release of Blitz, sprites are only available in Blitz mode and have either 3 or 15
colours (2 or 4 bitplanes). Each slice may display a maximum of up to 8 sprites. Other
conditions may lower this maximum such as the width, depth and resolution of the slice.
The Amiga hardware has 8 sprite channels, standard 16 wide 3 colour sprites require a
single channel, 15 colour sprites need two and sprites wider than 16 will require extra
channels also. 15 color sprites must use an even numbered channel, the subsequent odd
channel then becomes unavailable.

Sprites also require a special colour palette set up. Fifteen colour sprites take their RGB
values from colour registers 17 through 31. Three colour sprites, however, take on RGB
values depending upon the sprite channels being used to display them. The following table
shows which palette registers affect which sprite channels:

Sprite Channel Colour Registers
0,1 17-19
2,3 21-23
4,5 25-27
6,7 29-31

GetaSprite sprite#,shape#
To be able to display a sprite, you must first create a sprite object. This will contain the
image information for the sprite. GetaSprite will transfer the graphic data contained in a
shape object into a sprite object. This allows you to perform any of the Blitz shape
manipulation commands (eg Scale or Rotate) on a shape before creating a sprite from the
shape.

Once GetaSprite has been executed, you may not require the shape object any more. In
this case, it is best to free up the shape object (using Free Shape) to conserve as much
valuable chip memory as possible.

Page 166

ShowSprite sprite#,x,y,spritechannel
Used to actually display a sprite through a sprite channel. Paremeters x and y specify the
position the sprite is to be displayed at. These parameters are ALWAYS given in lo-
resolution pixels. Spritechannel is a value 0 through 7 which decides which sprite channel
the sprite should be display through.

InFront spritechannel
A feature of sprites is that they may be displayed either ‘in front of’ or ‘behind’ the bitmap
graphics they are appearing in. This command allows you to determine which sprites
appear in front of bitmaps, and which sprites appear behind.

Spritechannel must be an even number in the range 0 through 8. After executing an
InFront command, sprites displayed through sprite channels greater than or equal to
spritechannel will appear BEHIND any bitmap graphics. Sprites displayed through
channels less than spritechannel will appear IN FRONT OF any bitmap graphics. For
example, after executing an InFront 4, any sprites displayed through sprite channels 4,5,6
or 7 will appear behind any bitmap graphics, while any sprites displayed through sprite
channels 0,1,2 or 3 will appear in front of any bitmap graphics.

InFront should only be used in non-dualplayfield slices.

InFrontF spritechannel
Used on dualplayfield slices to determine sprite/playfield priority with respect to the
foreground playfield. Using combinations of InFrontF and InFrontB (used for the
background playfield), it is possible to display sprites at up to 3 different depths - some in
front of both playfields, between the playfields, and behind both playfields.

InFrontB spritechannel
Used on dualplayfield slices to determine sprite/playfield priority with respect to the
background playfield. Using combinations of InFrontB and InFrontF (used tor the
foreground playfield), it is possible to display sprites at up to 3 different depths - some in
front of both playfields, some between the playfields, and some behind both playfields.

LoadSprites sprite#[,sprite#],filename$
Lets you load a ‘range’ of sprites from disk into a series of sprite objects. The file specified
by filename$ should have been created using the SaveSprites command. The first sprite#
parameter specifies the number of the first sprite object to be loaded. Further sprites will
be loaded into increasingly higher sprite objects. If a second sprite# parameter is supplied,
then only sprites up to and including the second sprite# value will be loaded. If there are
not enough sprites in the file to fill this range, any excess sprites will remain untouched.

Page 167

SaveSprites sprite#,sprite#,filename$
Allows you to create a file containing a range of sprite objects. This file may be later loaded
using the LoadSprites command. The range of sprites to be saved is specified by
sprite#,sprite#, where the first sprite# refers to the lowest sprite to be saved and the
second sprite# the highest.

SpriteMode mode
For use with the capabilities of the new display library SpriteMode is used to define the
width of sprites to be used in the program. The mode values 0, 1 and 2 correspond to the
widths 16, 32 and 64.

Page 168

R-19: COLLISION DETECTION

This section deals with various commands involved in detection of object collisions.

SetColl colour,bitplanes[,playfield]
There are 3 different commands involved in controlling sprite/bitmap collision detection, of
which SetColl is one (the other 2 being SetCollOdd and SetCollHi). All three determine
what colours in a bitmap will cause a collision with sprites. This allows you to design
bitmaps with ‘safe’ and ‘unsafe’ areas.

SetColl allows you to specify a single colour which, when present in a bitmap, and in
contact with a sprite, will cause a collision. The colour parameter refers to the collide-able
colour. Bitplanes refers to the number of bitplanes (depth) that bitmap collision are to be
tested in.

The optional playfield parameter is only used in a dualplayfield slice. If playfield is 1, then
colour refers to a colour in the foreground bitmap. If playfield is 0, then colour refers to a
colour in the background bitmap.

DoColl and PColl are the commands used for actually detecting the collisions.

SetCollOdd
Used to control the detection of sprite/bitmap collisions. SetCollOdd will cause ONLY the
collisions between sprites and ‘odd coloured’ bitmap graphics to be reported. Odd
coloured bitmap graphics refers to any bitmap graphics rendered in an odd colour number
(de: 1,3,5...). This allows you to design bitmap graphics in such a way that even coloured
areas are ‘safe’ (de: they will not report a collision) whereas odd colour areas are ‘unsafe’
(de: they will report a collision).

DoColl and PColl commands are used to detect the actual sprite/bitmap collisions.

SetCollHi bitplanes
May be used to enable sprite/bitmap collisions between sprites and the ‘high half’ colour
range of a bitmap. For example, if you have a 16 colour bitmap, the high half of the colours
would be colours 8 through 15. The bitplanes parameter should be set to the number of
bitplanes (depth) of the bitmap with which collisions should be detected.

Please refer to the SetColl command for more information on sprite/bitmap collisions.

Page 169

DoColl
Used to perform sprite/bitmap collision checking. Once DoColl is executed, the PColl
and/or SColl functions may be used to check for sprite/bitmap or sprite/sprite collisions.
Before DoColl may be used with PColl, the type of bitmap collisions to be detected must
have been specified using one of the SetColl, SetCollOdd or SetCollHi commands.

After executing a DoColl, PColl and SColl will return the same values until the next time
DoColl is executed.

PColl(spritechannel)
This function may be used to find out if a particular sprite has collided with any bitmaps.
Spritechannel refers to the sprite channel of the sprite you wish to check is being displayed
through. If the specified sprite has collided with any bitmap graphics, PColl will return a
true (-1) value, otherwise PColl will return false (0).

Before using PColl, a DoColl must previously have been executed.

SColl(spritechannel,spritechannel)
Used to determine whether the 2 sprites currently displayed through the specified sprite
channels have collided. If they have, SColl will return true (-1), otherwise SColl will return
false (0).DColl must have been executed prior to using Scoll.

ShapesHit(shape#,x,y,shape#,x,y)
This function will calculate whether the rectangular areas occupied by 2 shapes overlap.
ShapesHit will automatically take the shape handles into account. If the 2 shapes overlap,
ShapesHit will return true (-1),otherwise ShapesHit will return false (0).

ShapeSpriteHit(shape#,x,y,sprite#,x,y)
This function will calculate whether the rectangular area occupied by a shape at one
position, and the rectangular area occupied by a sprite at another position are overlapped.
If the areas do overlap, ShapeSpriteHit will return true (-1), otherwise ShapeSpriteHit will
return false (0). ShapeSpriteHit automatically takes the handles of both the shape and the
sprite into account.

SpritesHit(sprite#,x,y,sprite#,x,y)
This function will calculate whether the rectangular areas occupied by 2 sprites overlap.
SpritesHit will automatically take the sprite handles into account. If the 2 sprites overlap,
SpritesHit will return true (-1), otherwise SpritesHit will return false (0).

Care should be taken with the pronunciation of this command.

Page 170

RectsHit(x1,y1,width1,height1,x2,y2,width2,height2)
This function may be used to determine whether 2 arbitrary rectangular areas overlap. If
the specified rectangular areas overlap, RectsHit will return true (-1), otherwise RectsHit
will return false (0).

Care should be taken with the pronunciation of this command.

Page 171

R-20: PALETTES

Amiga colours are represented as values for the three primary colours red, green and blue.
These values are combined as an RGB value. Palettes are Blitz objects that contain a series
of RGB values that represent the colours used by the display. Palette information can be
loaded from an IFF file or defined using the PalRGB/AGAPalRGB commands. Palettes can
be assigned to screens and slices with both the Use Palette and ShowPalette commands.

Many commands are available for manipulating the colours within a palette.

Colour values on slices and screens can also be changed directly without the use of
palettes using the RGB and AGARGB commands.

LoadPalette palette#,filename$[,paletteoffset]
Creates and initialises a palette object. Filename$ specifies the name of an ILBM IFF file
containing colour information. If the file contains colour cycling information, this will also
be loaded into the palette object.

An optional paletteoffset may be specified to allow the colour information to be loaded at a
specified point (colour register) in the palette. This is especially useful in the case of sprite
colours, as these must begin at colour register sixteen.

LoadPalette does not actually change any display colours. Once a palette is loaded, Use
Palette can be used to cause display changes.

ShowPalette palette#
Replaces Use Palette for copying a palette’s colours to the current screen or slice.

Use Palette palette#
Transfers palette information from a palette object to a displayable palette. If executed in
Amiga mode, palette information is transferred into the palette of the currently used
screen. If executed in Blitz mode, palette information is transferred into the palette of the
currently used slice.

NewPaletteMode On|Off
This flag has been added for compatibility with older Blitz programs. By setting
NewPaletteMode to On the Use Palette command merely makes the specified palette the
current object and does not try to copy the colour information to the current screen or slice.

Page 172

Free Palette palette#
Erases all information in a palette object. That palette object may no longer be Used or
Cycled.

SavePalette palette#,filename$
Creates a standard IFF "CMAP" file using the given palette’s colours.

CyclePalette palette#
Uses the standard color cycling parameters in the palette object to cycle the colours.
Unlike the Cycle command which copied the resulting palette to the current screen the
CyclePalette command just modifies the palette object and can hence be used with the
DisplayBitmap command in the new display library.

FadePalette srcpalette#,destpalette#,brightness.q ;palettelib
Multiplies all colours in a palette by the brightness argument and maces the result in the
destpalette.

lnitPalette palette#,numcolours
Simply initialises a palette object to hold numcolours. All colours will be set to black.

DecodePalette palette#,memorylocation[,paletteoffset]
Allows the programmer to unpack included IFF palette information to Blitz palette objects.

PalRGB palette#,colourregister,red,green,blue
Allows you to set an individual colour register within a palette object. Unless an RGB has
also been executed, the actual colour change will not come into effect until the next time
ShowPalette is executed.

RGB colourregister,red,green,blue
Enables you to set individual colour registers in a palette to an RGB colour value. If
executed in Amiga mode, RGB sets colour registers in the currently used screen. If
executed in Blitz Mode, RGB sets colour registers in the currently used slice.

Note that RGB does not alter palette objects in any way.

Page 173

Red(colourregister)
Returns the amount of RGB red in a specified colour register. If executed in Amiga mode,
Red returns the amount of red in the specified colour register of the currently used screen.
If executed in Blitz mode, Red returns the amount of red in the specified colour register of
the currently used slice.

This command will always return a value between 0 and 15.

Green(colourregister)
Returns the amount of RGB green in a specified colour register. If executed in Amiga mode,
Green returns the amount of green in the specified colour register of the currently used
screen. If executed in Blitz mode, Green returns the amount of green in the specified
colour register of the currently used slice.

This command will always return a value between 0 and 15.

Blue(colourregister)
Returns the amount of RGB blue in a specified colour register. If executed in Amiga mode,
Blue returns the amount of blue in the specified colour register of the currently used
screen. If executed in Blitz mode, Blue returns the amount of blue in the specified colour
register of the currently used slice.

This command will always return a value between 0 and 15.

AGARGB colourregister,red,green,blue
This is the AGA equivalent of the RGB command. The red, green and blue parameters must
be in the range 0 through 255, while colourregister is limited to the number of colours
available on the currently used screen.

AGAPalRGB palette#,colourregister,red,green,blue
This is the AGA equivalent of the PalRGB command. AGAPalRGB allows you to set an
individual colour register within a palette object. This command only sets up an entry in a
palette object, and will not alter the actual screen palette until a ‘ShowPalette’ is executed.

AGARed(colourregister)
Returns the red component of the specified colour register within the currently used
screen. The returned value will be within the range 0 (being no red) through 255 (being full
red).

Page 174

AGAGreen(colourregister)
Returns the green component of the specified colour register within the currently used
screen. The returned value will be within the range 0 (being no green) through 255 (being
full green).

AGABlue(colourregister)
Returns the blue component of the specified colour register within the currently used
screen. The returned value will be within the range 0 (being no blue) through 255 (being
full blue).

SetCycle palette#,cycle,lowcolour,highcolour[,speed]
Used to configure colour cycling information for the Cycle command. Low and high colours
specify the range of colours that will cycle. You may have a maximum of 7 different cycles
for a single palette. The optional parameter speed specifies how quickly the colours will
cycle, a negative value will cycle the colours backwards.

Cycle palette#
Causes the colour cycling information contained in the specified palette to be cycled on the
currently used screen. Colour cycling information is created when LoadPalette is executed
or with the SetCycle command. StopCycle will halt all colour cycling started with the Cycle
command.

FadeIn palette#[,rate[,lowcolour,highcolour]]
Causes the colour palette of the currently used slice to be ‘faded in’ from black up to the
RGB values contained in the specified palette#.

The rate# allows to control the speed of the fade, with 0 being the fastest fade. Lowcolour
and highcolour allow to control which colour palette registers are affected by the fade.

FadeOut palette#[,rate[,lowcolour,highcolour]]
Causes the colour palette of the currently used slice to be ‘faded out’ from the RGB values
contained in the specified palette# down to black.

The rate# allows to control the speed of the fade, with 0 being the fastest fade. Lowcolour
and highcolour allow to control which colour palette registers are affected by the fade. For
FadeOut to work properly, the RGB values in the currently used slice should be set to the
specified palette# prior to using FadeOut.

Page 175

ASyncFade On|Off
Allows you control over how the FadeIn and FadeOut commands work. Normally, FadeIn
and FadeOut will halt program flow, execute the entire fade, and then continue program
flow. This is ASyncFade Off mode.

ASyncFade On will cause FadeIn and FadeOut to work differently. Instead of performing
the whole fade at once, the programmer must execute the DoFade command to perform
the next step of the fade. This allows fading to occur in parallel with program flow.

DoFade
Causes the next step of a fade to be executed. ASyncFade On, and a FadeIn or FadeOut
must be executed prior to calling DoFade.

The FadeStatus function may be used to determine whether there are any steps of fading
left to perform.

FadeStatus
Used in conjunction with the DoFade command to determine if any steps of fading have yet
to be performed. If a fade process has not entirely finished yet (ie: more DoFades are
required), then FadeStatus will return true (-1). If not, FadeStatus will return false (0).
Please refer to ASyncFade and DoFade for more information.

PaletteRange palette#,startcol,endcol,r0,g0,b0,r1,g1,b1
Creates a spread of colours within a palette. Similar to DPaint's spread function,
PaletteRange takes a start and end colour and creates the color tweens between both of
them them.

DuplicatePalette srcpalette#,destpalette#
Creates a new palette which exactly matches the srcpalette.

Page 176

R-21: SOUND, MUSIC & SPEECH

Sound objects are used to store audio information. This information can be taken from an
8SVX IFF file using LoadSound, or defined by hand through a BASIC routine using
InitSound and SoundData. Once a sound is created, it may be played through the Amiga’s
audio hardware.

Blitz supports loading and playing of both SoundTracker and MED module music files.

The Amiga speech synthesiser is also accessible from Blitz. The narrator.device has been
upgraded in 2.0 increasing the quality of the speech. With a bit of messing around you can
have a lot of fun with the Amiga’s ‘voice’.

LoadSound sound#,filename$
Creates a sound object for later playback. The sound is taken from an 8SVX IFF file. An
error will be generated if the specified file is not in the correct IFF format.

Sound sound#,channelmask[,vol1[,vol2...]]
Causes a previously created sound object to be played through the Amiga’s audio
hardware. Channelmask specifies which of the Amiga’s four audio channels the sound
should be played through, and should be in the range 1 through 15.

The following is a list of Channelmask values and their effect:

Mask Channel0 Channel1 Channel2 Channel3
1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

Page 177

In the above table, any audio channels specified as ‘off’ are not altered by Sound, and any
sounds they may have previously been playing will not be affected.

The volx parameters allow individual volume settings for different audio channels. Volume
settings must be in the range zero through 64, zero being silence, and 64 being loudest.
The first vol parameter specifies the volume for the lowest numbered ‘on’ audio channel,
the second vol for the next lowest and so on.

For example, assume you are using the following Sound command:

Sound 0,10,32,16

The channelmask of ten means the sound will play through audio channels one and three.
The first volume of 32 will be applied to channel one, and the second volume of 16 will be
applied to channel three. Any vol parameters omitted will be cause a volume setting of 64.

LoopSound sound#,channelmask[,vol1[,vol2...]]
Behaves identically to Sound, only the sound will be played repeatedly. Looping a sound
allows for the facility to play the entire sound just once, and begin repeating at a point in
the sound other than the beginning. This information is picked up from the 8SVX IFF file,
when LoadSound is used to create the sound, or from the offset parameter of InitSound.

Volume channelmask,vol1[,vol2...]
Allows you to dynamically alter the volume of an audio channel. This enables effects such
as volume fades. For an explanation of channelmask and vol parameters, please refer to
the Sound command.

InitSound sound#,length[,period[,repeat]]
Initialises a sound object in preparation for the creation of custom sound data. This allows
simple sound waves such as sine or square waves to be algorithmically created. SoundData
should be used to create the actual wave data.

Length refers to the length in bytes, the sound object is required to be. Length MUST be
less than 128K, and MUST be even.

Period allows you to specify a default pitch for the sound. A period of 428 will cause the
sound to be played at approximately middle ‘C’.

Offset is used in conjunction with LoopSound, and specifies a position in the sound at
which repeating should begin. Please refer to LoopSound for more information on
repeating sounds.

Page 178

SoundData sound#,offset,data
Allows you to manually specify the waveform of a sound object. The sound object should
normally have been created using InitSound, although altering IFF sounds is perfectly
legal. SoundData alters one byte of sound data at the specified Offset. Data refers to the
actual byte to place into the sound, and should be in the range -128 to +127.

PeekSound(sound#,offset)
Returns the byte of a sample at specified offset of sound object specified.

DecodeSound sound#,memorylocation
Similar to the other new Decode commands allows the programmer to include sound files
within their program’s object code.

SetPeriod sound#,period
Allows the programmer to manually adjust the period of the sound object to change its
effective pitch.

DiskPlay filename$,channelmask[,vol1[,vol2...]]
Plays an 8SVX IFF sound file straight from disk. This is ideal for situations where you simply
want to play a sample without the extra hassle of loading a sound, playing it, and then
freeing it. This command will also halt program flow until the sample has finished playing.
DiskPlay usually requires much less memory to play a sample than the LoadSound, Sound
technique. DiskPlay also allows you to play samples of any length, whereas LoadSound
only allows samples up to 128K in length to be loaded.

DiskBuffer bufferlen
Allows you to set the size of the memory buffer used by the DiskPlay command. This buffer
is by default set to 1024 bytes, and should not normally have to be set to more than this.
Reducing the buffer size by too much may cause loss of sound quality of the DiskPlay
command. If you are using DiskPlay to access a very slow device, the buffer size may have
to be increased.

Filter On|Off
Filter may be used to turn on or off the Amiga’s low pass audio filter.

Page 179

LoadModule module#,filename$
Loads in from disk a SoundTracker/NoiseTracker music module. This module may be later
played back using PlayModule.

Free Module module#
Used to delete a module object. Any memory occupied by the module will also be free’d.

PlayModule module#
Causes a previously loaded SoundTracker/NoiseTracker song module to be played back.

StopModule
Cause any SoundTracker/NoiseTracker modules which may be currently playing to stop.

LoadMedModule medmodule# name
Loads any version 4 channel OctaMED module. Following routines support up to and
including version 3 of the Amiganut's MED standard. The number of MedModules loaded in
memory at one time is only limited by the MedModules maximum set in the Blitz Options
requester. Like any Blitz commands that access files LoadMedModule can only be used in
Amiga mode.

StartMedModule medmodule#
Responsible for initialising the module including linking after it is loaded from disk using
the LoadMedModule command. It can also be used to restart a module from the beginning.

PlayMed
Responsible for playing the current MedModule, it must be called every 50 th of a second
either on an interrupt (#5) or after a VWait in a program loop.

StopMed
Cause any med module to stop playing. This not only means that PlayMed will have no
affect until the next StartMedModule but silences audio channels so they are not left
ringing as is the effect when PlayMed is not called every vertical blank.

JumpMed pattern#
Changes the pattern being played in the current module.

Page 180

SetMedVolume volume
Changes the overall volume that the MED Library plays the module, all the audio channels
are affected. This is most useful for fading out music by slowly decreasing the volume from
64 to 0.

GetMedVolume channel#
Returns the current volume setting of the specified audio channel. This is useful for graphic
effects required to sync to certain channels of the music playing.

GetMedNote Channel#
Returns the current note playing from the specified channel. As with GetMedVolume this is
useful for producing graphics effects synced to the music the MED Library is playing.

GetMedInstr channel
Returns the current instrument playing through the specified audio channel.

SetMedMask channel Mask
Allows the user to mask out audio channels needed by sound effects stopping the MED
Library using them.

DecodeMedModule medmodule#,memorylocation
Replaces the cludgemedmodule, as MED modules are not packed but used raw,
DecodeMedModule simply checks to see the memory location passed is in chip mem (if
not it copies the data to chip) and points the Blitz MedModule object to that memory.

Speak string$
Will first convert the given string to phonetics and then pass it to narrator.device.
Depending on the settings of the narrator device (see SetVoice) the Amiga will "speak" the
string you have sent in the familiar Amiga synthetic voice.

SetVoice rate,pitch,expression,sex,volume,frequency
Alters the sound of the Amiga’s speech synthesiser by changing the vocal characteristics
listed in the parameters above.

Page 181

Translate$(string$)
Returns the phonetic equivalent of the string for use with the PhoneticSpeak command.

PhoneticSpeak phonetic$
Similar to the Speak command but should only be passed strings containing legal
phonemes such as that produced by the Translate$() function.

VoiceLoc
Returns a pointer to the internal variables in the speech synthesiser that enable the user to
access new parameters added to the V37 Narrator Device. Formants as referred to in the
descriptions are the major vocal tracts and are separated into the parts of speech that
produce the bass, medium and treble sounds.

Page 182

R-22: SCREENS

The following section covers the Blitz commands that let you open and control Intuition
based screen objects.

Screen screen#,mode[,title$]
Screen screen#,x,y,width,height,depth,vmode,title$,dpen,bpen[bmap#]
Will open an Intuition screen. The are two formats of the Screen command, a quick format,
and a long format. The quick format of the Screen commands involves 3 parameters –
screen#, mode and an optional title$.

Screen# specifies the screen object to create.

Mode specifies how many bitplanes the screen is to have, and should be in the range 1
through 6. Adding 8 to Mode will cause a hi-res screen to be opened, as opposed to the
default lo-res screen. A hi-res screen may only have from 1 to 4 bitplanes. Adding 16 to
Mode will cause an interlaced screen to be opened. Title$ allows you to add a title to the
screen.

The long format of Screen gives you much more control over how the screen is opened.

The vmode parameter refers to the resolution of the screen, add the values together to
make up the screen mode you require:

hires = $8000
ham = $200
superhires = $20
interlace = 4
lores = 0

ShowScreen screen#
Will cause the specified screen object to be moved to front of the display.

WbToScreen screen#
Assigns the Workbench screen a screen object number. This allows you to perform any of
the functions that you would normally do own your own screens on the Workbench screen.
Its main usage is to allow you to open windows on the Workbench screen. After execution,
the Workbench screen will become the currently used screen.

Page 183

FindScreen screen#[,title$]
This command will find a screen and give it an object number so it can be referenced in
your programs. If title$ is not specified, then the foremost screen is found and given the
object number screen#. If the title$ argument is specified, then a screen will be searched
for that has this name.

After execution, the found screen will automatically become the currently used screen.

LoadScreen screen#,filename$[,palette#]
Loads an IFF ILBM picture into the screen object specified by screen#. The file that is
loaded is specified by filename$. You can also choose to load in the colour palette for the
screen, by specifying the optional palette#. This value is the object number of the palette
you want the pictures colours to be loaded into. For the colours to be used on your screen,
you will have to use the statement.

SaveScreen screen#,filename$
Saves a screen to disk as an IFF ILBM file. The screen you wish to save is specified by the
screen#, and the name of the file you to create is specified by filename$.

SMouseX
Returns the horizontal position of the mouse relative to the left edge of the currently used
screen.

SMouseY
Returns vertical position of the mouse relative to top of the current screen.

ViewPort(screen#)
This function returns the location of the specified screens viewport. The viewport address
can be used with graphics.library commands and the like.

ScreenPens activetext,inactivetext,hilight,shadow,activefill,gadgetfill
Configures the 10 default pens used for system gadgets in Workbench 2. Any screens
opened after a ScreenPens statement will use the pens defined. This command will have
no affect when used with Workbench 1.3 or earlier.

Page 184

CloseScreen screen#
Has been added for convenience. Same as Free Screen but a little more intuitive (especially
for those that have complained about such matters (yes we care)).

HideScreen screen#
Move the screen to the back of all screens open in the system.

BeepScreen screen#
Flash the specified screen.

MoveScreen screen#,deltax,deltay
Move the specified screen by specified amount. Good for system friendly special effects.

ScreenTags screen#,title$[&taglist]
ScreenTags screen#,title$[[,tag,data]…]
Full access to all the Amiga’s new display resolutions is now available in Amiga mode by
use of ScreenTags command. Following tags are of most interest to programmers.

#Left $80000021
#Top $80000022
#Width $80000023
#Height $80000024
#Depth $80000025
#DetailPen $80000026
#BlockPen $80000027
#Title $80000028
#Colors $80000029
#ErrorCode $8000002A
#Font $8000002B
#SysFont $8000002C
#Type $8000002D

#BitMap $8000002E
#PubName $8000002F
#PubSig $80000030
#PubTask $80000031
#DisplayID $80000032
#DClip $80000033
#Overscan $80000034
#ShowTitle $80000036
#Behind $80000037
#Quiet $80000038
#AutoScroll $80000039
#Pens $8000003A
#FullPalette $8000003B

#ColorMapEntries $8000003C
#Parent $8000003D
#Draggable $8000003E
#Exclusive $8000003F
#SharePens $80000040
#Interleaved $80000042
#Colors32 $80000043
#FrontChild $80000045
#BackChild $80000046
#LikeWorkbench $80000047
#Reserved $80000048

ShowBitMap [bitmap#]
This command is the Amiga-mode version of the Show command. It enables you to change
a screen’s bitmap allowing double buffered (flicker free) animation to happen on a
standard Intuition screen. Unlike Blitz mode it is better to do ShowBitMap then VWait to
sync up with the Amiga’s display, this will make sure the new bitmap is being displayed
before modifying the previous bitmap.

Page 185

R-23: WINDOWS

Windows are the heart of the user friendly Amiga operating system. Not only are they the
graphics device used for both user input and display but are the heart of the messaging
system that communicates this information to your program by way of the events system.

Typically a Blitz program will either open or find a screen to use, define a list of gadgets and
then open a window on the screen with the gadget list attached. It will then wait for an
event such as the user selecting a menu or hitting a gadget and act accordingly.

The program can specify which events they wish to receive by modifying the IDCMP flags
for the window. Once an event is received Blitz has a wide range of commands for finding
out exactly what the user has gone and done.

Blitz also offers a number of drawing commands that allow the programmer to render
graphics to the currently used window.

Window window#,x,y,width,height,flags,title$,dpen,bpen[,gadgetlist#]
Opens an Intuition window on the currently used screen. Window# is a unique object
number for the new window. X & y refer to the offset from top left of the screen the window
is to appear at. Width and height are the size of the window in pixels.

Flags are the special window flags that a window can have when opened. These flags allow
for the inclusion of a sizing gadget, drag bar and many other things. The flags are listed as
followed, with their corresponding values. To select more than one of these flags, they
must be logically OR’d together using the ‘|’ operator.

For example, to open a window with drag bar and sizing gadget which is active once
opened, you would specify a flags parameter of $1|$2|$1000.

Title$ is a BASIC string, either a constant or a variable, that you want to be the title of the
window.

Dpen is the colour of the detail pen of the window. This colour is used for window title.

Bpen is the block pen of the window. This pen is used for things like the border around the
edge of the window.

The optional gadgetlist# is the number of a gadgetlist object you have may want attached
to the window.

Page 186

After the window has opened, it will become the currently used window. The window
library has been extended to handle super bitmap windows. SuperBitMap windows allow
the window to have its own bitmap which can actually be larger than the window. The two
main benefits of this feature are the window's ability to refresh itself and the ability to
scroll around a large area "inside" the bitmap.

To attach a bitmap to a window set the SuperBitMap flag in the flags field and include the
bitmap# to be attached.

Window Flag Value Description
WINDOWSIZING $0001 Attaches sizing gadget to bottom right corner of the

window and allows it to be sized.
WINDOWDRAG $0002 Allows the window to be dragged with the mouse by

its title bar.
WINDOWDEPTH $0004 Lets windows be pushed behind or in front of other

windows.
WINDOWCLOSE $0008 Attaches a close gadget to the upper left corner of

the window.
SIZEBRIGHT $0010 With GIMMEZERO & ZEROWINDOWSIZING set,

this will leave the right hand margin, the width of
the sizing gadget, clear, and drawing in window
will not extend over this right margin.

SIZEBBOTTOM $0020 Same as SIZEBRIGHT except it leaves a margin at
the bottom of the window, the width of the sizing
gadget.

BACKDROP $0100 This opens the window behind any other window
that is already opened. It cannot have the
WINDOWDEPTH flag set also, as the window is
intended to stay behind all others.

GIMME00 $0400 This flag keeps the windows border separate from
the rest of the windows area. Any drawing on the
window, extending to the borders, will not
overwrite the border. NOTE: Although convenient,
this does take up more memory than usual.

BORDERLESS $0800 Opens a window without any border on it at all.
ACTIVATE $1000 Activates the window once opened.

Use Window window#
Causes the specified window object to become the currently used window. Use Window
also automatically performs a WindowInput and WindowOutput on the specified window.

Page 187

Free Window window#
Closes down a window. This window is now gone, and can not be accessed any more by
any statements or functions. Once a window is closed, you may want to direct the input
and output somewhere new, by calling Use Window on another window,
DefaultOutput/DefaultInput, or by some other appropriate means. Window# is the window
object number to close.

WindowInput window#
Causes any future executions of the Inkey$, Edit$ or Edit functions to receive their input as
keystrokes from the specified window object. WindowInput is automatically executed
when either a window is opened, or Use Window is executed. After a window is closed
(using Free Window), remember to tell Blitz to get its input from somewhere else useful
(for example, using another WindowInput command) before executing another Inkey$,
Edit$ or Edit function.

WindowOutput window#
Causes any future executions of either the Print or NPrint statements to send their output
as text to the specified window object. WindowOutput is automatically executed when
either a window is opened, or Use Window is executed.

After a window is closed (using Free Window), remember to send output somewhere else
useful (for example, using another WindowOutput command) before executing another
Print or NPrint statement.

DefaultlDCMP idcmpflags
Allows you to set the IDCMP flags used when opening further windows. You can change the
flags as often as you like, causing all of your windows to have their own set of IDCMP flags
if you wish.

A window’s IDCMP flags will affect the types of ‘events’ reportable by the window. Events
are reported to a program by means of either the WaitEvent or Event functions. To select
more than one IDCMP Flag when using DefaultIDCMP, combine the separate flags together
using the OR operator (‘|’).

Any windows opened before any DefaultIDCMP command is executed will be opened using
an IDCMP flags setting of $2|$4|$8|$20|$40|$100|$200|$400|$40000|$80000.

This should be sufficient for most programs.

Page 188

If you do use DefaultIDCMP for some reason, it is important to remember to include all
flags necessary for the functioning of the program. For example, if you open a window
which is to have menus attached to it, you MUST set the $100 (menu selected) IDCMP flag,
or else you will have no way of telling when a menu has been selected.

IDCMP FlagEvent
$2 Reported when a window has its size changed.
$4 Reported when a windows contents have been corrupted. This may

mean a windows contents may need to be re-drawn.
$8 Reported when either mouse button has been hit.
$10 Reported when the mouse has been moved.
$20 Reported when a gadget within a window has been pushed ‘down’.
$40 Reported when a gadget within a window has been ‘released’.
$100 Reported when a menu operation within a window has occurred.
$200 Reported when the ‘close’ gadget of a window has been selected.
$400 Reported when a keypress has been detected.
$8000 Reported when a disk is inserted into a disk drive.
$10000 Reported when a disk is removed from a disk drive.
$40000 Reported when a window has been ‘activated’.
$80000 Reported when a window has been ‘de-activated’.

AddIDCMP idcmpflags
Allows you to ‘add in’ IDCMP flags to the IDCMP flags selected by DefaultIDCMP. Please
refer to DefaultIDCMP for a thorough discussion of IDCMP flags.

SubIDCMP idcmpflags
Allows you to ‘subtract out’ IDCMP flags from the IDCMP flags selected by DefaultIDCMP.
Please refer to DefaultIDCMP for a thorough discussion of IDCMP flags.

WaitEvent
Halt program execution until an Intuition event has been received. This event must be one
that satisfies the IDCMP flags of any open windows. If used as a function, WaitEvent
returns the IDCMP flag of the event (please refer to DefaultIDCMP for a table of possible
IDCMP flags). If used as a statement, you have no way of telling what event occurred.

You may find the window object number that caused the event using the EventWindow
function.

In the case of events concerning gadgets or menus, further functions are available to
detect which gadget or menu was played with. In the case of mouse button events, the
MButtons function may be used to discover exactly which mouse button has been hit.

Page 189

IMPORTANT NOTE: If you are assigning the result of WaitEvent to a variable, MAKE SURE
that the variable is a long type variable. For example:

MyEvent.l=WaitEvent

Event
Works similarly to WaitEvent in that it returns the IDCMP flag of any outstanding windows
events. However, Event will NOT cause program flow to halt. Instead, if no event has
occurred, Event will return 0.

EventWindow
Used to determine in which window the most recent window event occurred. Window
events are detected by use of either WaitEvent or Event commands. The value returned by
this command is the window object number in which the most recent window event
occurred.

FlushEvents [idcmpglag]
When window events occur in Blitz, they are automatically ‘queued’ for you. This means
that if your program is tied up processing one window event while others are being created,
you wont miss out on anything. Any events which may have occurred between executions
of WaitEvent or Event will be stored in a queue for later use. There may be situations where
you want to ignore this backlog of events. Use FlushEvents to make it.

Executing FlushEvents with no parameters will completely clear Blitz’s internal event
queue, leaving you with no outstanding events. Supplying an idcmpglag parameter will only
clear events of the specified type from the event queue.

GadgetHit
Returns the identification number of the gadget that caused the most recent ‘gadget
pushed’ or ‘gadget released’ event.

As gadgets in different windows may possibly possess the same identification numbers,
you may also need to use EventWindow to tell exactly which gadget was hit.

MenuHit
Returns the identification number of the menu that caused the last menu event. As with
gadgets, you can have different menus for different windows with same identification
number. Therefore you may also need to use EventWindow to find which window caused
the event. If no menus have yet been selected, Menuhit will return -1.

Page 190

ItemHit
Returns the identification number of the menu item that caused the last menu event.

SubHit
Returns the identification number of the the menu subitem that caused the last menu
event. If no subitem was selected, SubHit will return -1.

MButtons
Returns the codes for the mouse buttons that caused the most recent ‘mouse buttons’
event. If menus have been turned off using Menus Off, then the right mouse button will
also register an event and can be read with Mbuttons.

RawKey
Returns the raw key code of a key that caused most recent ‘key press’ events.

Qualifier
Returns the qualifier of the last key that caused a ‘key press’ event to occur. A qualifier is a
key which alters the meaning of other keys; for example the ‘shift’ keys. Here is a table of
qualifier values and their equivalent keys:

Key Left Right
UnQualified $8000 $8000
Shift $8001 $8002
Caps Lock Down $8004 $8004
Control $8008 $8008
Alternate $8010 $8020
Amiga $8040 $8080

A combination of values may occur, if more that one qualifier key is being held down. The
way to filter out the qualifiers that you want is by using the logical AND operator.

WPlot x,y,colour
Plots a pixel in the currently used window at the coordinates x,y in the colour specified by
colour.

Page 191

WBox x1,y1,x2,y2,colour
Draws a solid rectangle in the currently used window. The upper left hand coordinates of
the box are specified with the x1 and y1 values, and the bottom right hand corner of the
box is specified by the values x2 and y2.

WCircle x,y,radius,colour
Allows to draw a circle in currently used window. You specify the centre of the circle with
the coordinates x,y. The radius value specifies the radius of the circle you want to draw. The
last value, colour specifies what colour the circle will be drawn in.

WEllipse x,y,xradius,yradius,colour
Draws an ellipse in the currently used window. You specify the centre of the ellipse with the
coordinates x,y. Xradius specifies the horizontal radius of the ellipse, yradius the vertical
radius. Colour refers to the colour in which to draw the ellipse.

WLine x1,y1,x2,y2[,xn,yn...],colour
Wline allows you to draw a line or a series of lines into the currently used window. The first
two sets of coordinates x1,y1,x2,y2, specify the start and end points of the initial line. Any
coordinates specified after these initial two, will be the end points of another line going
from the last set of end points, to this set. Colour is the colour of the line(s) that are going
to be drawn.

WCls [colour]
Clears the currently used window to colour 0, or a colour is specified, then it will be cleared
to this colour. If the current window was not opened with the GIMMEZEROZERO flag set,
then this statement will clear any border or title bar that the window has. The InnerCls
statement should be used to avoid these side effects.

InnerCls [colour]
Clears only the inner portion of the currently used window. It will not clear the titlebar or
borders as WCls would do if your window was not opened with the GIMMEZEROZERO flag
set. If a colour is specified, then that colour will be used to clear the window.

Page 192

WScroll x1,y1,x2,y2,deltax,deltay
Cause a rectangular area of the currently used window to be moved or ‘scrolled’. X1 and y1
specify the top left location of the rectangle, x2 and y2 the bottom right. The delta
parameters determine how far to move the area. Positive values move the area right/down,
while negative values move the area left/up.

Cursor thickness
Set the style of cursor that appears when editing strings or numbers with the Edit$ or Edit
functions. If Thickness is less than 0, then a block cursor will be used. If the Thickness is
greater then 0, then an underline thickness pixels high will be used.

Editat
After executing an Edit$ or Edit function, Editat may be used to determine the horizontal
character position of the cursor at the time the function was exited. Through the use of
Editat, EditExit, EditFrom and Edit$, simple full screen editors may be put together.

EditFrom [charpos]
Allows you to control how the Edit$ and Edit functions operate when used within windows.
If a charpos parameter is specified, then the next time an edit function is executed, editing
will commence at the specified character position (0 being the first character position).

Also, editing may be terminated by the use of the ‘return’ key or also by any non-printable
character (‘up arrow’ or ‘Esc’) or a window event. When used in conjunction with Editat and
EditExit, this allows you to put together simple full screen editors.

If charpos is omitted, Edit$ and Edit return to normal - editing always beginning at
character postition 0, and ‘return’ being the only way to exit.

EditExit
Returns the ASCII value of the character that was used to exit a window based Edit$ or Edit
function. You can only exit the edit functions with keypresses other than ‘return’ if EditFrom
has been executed prior to the edit call.

WindowFont intuifont#
Sets the font for the currently used window. Any further printing to this window will be in
the specified font. Intuifont# specifies a previously initialised intuifont object created using
LoadFont.

Page 193

WColour forecolour[,backcolour]
Sets the foreground and background colour of printed text for the currently used window.
Any further text printed on this window will be in these colours.

WJam mode
Sets the text drawing mode of the currently used window. These drawing modes allow you
to do inverted, complemented and other types of graphics. The drawing modes can be
OR’ed together to create a combination of them.

Mode Description
0 This draws only the foreground colour and leaves the background

transparent. Eg For the letter 0, any empty space (inside and outside the
letter) will be transparent.

1 This draws both the foreground and background to the window. Eg with the
letter 0 again, the 0 will be drawn, but any clear area (inside and outside) will
be drawn in the current background colour.

2 This will exlusive or (XOR) the bits of the graphics. Eg Drawing on the same
place with the same graphics will cause the original display to return.

4 This allows the display of inverse video characters. If used in conjunction with
Jam2, it behaves like Jam2, but the foreground and background colours are
exchanged.

Activate window#
Activate the window specified by window#.

Menus On|Off
May be used to turn ALL menus either on or off. Turning menus off may be useful if you
wish to read the right mouse button.

WPointer shape#
Allows you to determine the mouse pointer imagery used in the currently used window.
Shape# specifies an initialised shape object the pointer is to take its appearance from, and
must be of 2 bitplanes depth (4 colours).

WMove x,y
Move the current window to screen position x,y.

Page 194

WSize width,height
Alters the width and height of the current window to the values specified.

WMouseX
Returns the horizontal x coordinate of the mouse relative to the left edge of the current
window. If the current window was opened without the GIMMEZEROZERO flag set, then
the left edge is taken as the left edge of the border around the window, otherwise, if
GIMMEZEROZERO was set, then the left edge is the taken from inside the window border.

WMouseY
Returns the vertical y coordinate of the mouse relative to the top of the current window. If
the current window was opened without the GIMMEZEROZERO flag set, then the top is
taken as the top of the border around the window, otherwise, if GIMMEZEROZERO was set,
then the top is taken from inside the window border.

EMouseX
Returns the horizontal position of the mouse pointer at the time the most recent window
event occurred. Window events are detected using the WaitEvent or Event commands.

EMouseY
Returns vertical position of the mouse pointer at the time the most recent window event
occurred. Window events are detected using the WaitEvent or Event.

WCursX
Returns the horizontal location of the text cursor of the currently used window. The text
cursor position may be set using Wlocate.

WCursY
Returns the vertical location of the text cursor of the currently used window. The text
cursor position may be set using Wlocate.

WLocate x,y
Used to set the text cursor position within the currently used window. X and y are both
specified in pixels as offsets from the top left of the window. Each window has its own text
cursor position, therefore changing the text cursor position of one window will not affect
any other window’s text cursor position.

Page 195

WindowX
Returns the horizontal pixel location of the top left corner of the currently used window,
relative to the screen the window appears in.

WindowY
Returns the vertical pixel location of the top left corner of the currently used window,
relative to the screen the window appears in.

WindowWidth
Returns the pixel width of the currently used window.

WindowHeight
Returns the pixel height of the currently used window.

InnerWidth
Returns the pixel width of the area inside the border of currently window.

InnerHeight
Returns the pixel height of the area inside the border of currently window.

WTopOff
Returns the number of pixels between the top of the current window border and the inside
of the window.

WLeftOff
Returns the number of pixels between the left edge of the current window border and the
inside of the window.

SizeLimits minwidth,minheight,maxwidth,maxheight
Sets the limits that any new windows can be sized to with the sizing gadget. After calling
this statement, any new windows will have these limits imposed on them.

RastPort(window#)
Returns the specified window’s rastport address. Many commands in the graphics.library
and the like require a rastport as a parameter.

Page 196

PositionSuperBitMap x,y
Used to display a certain area of the bitmap in a super bitmap window.

GetSuperBitMap
After rendering changes to a superbitmap window the bitmap attached can also be
updated with the GetSuperBitMap. After rendering changes to a bitmap the superbitmap
window can be refreshed with the PutSuperBitMap command. Both commands work with
the currently used window.

PutSuperBitMap
See GetSuperBitmap description.

WTitle windowtitle$,screentitle$
Used to alter both the current window’s title bar and its screens title bar. Useful for
displaying important stats such as program status etc.

CloseWindow window#
Has been added for convenience. Same as Free Window but a little more intuitive (added
for those that have complained about such matters).

WPrintScroll
Scroll the current window upwards if the text cursor is below the bottom of the window and
adjust the cursor accordingly. Presently WPrintScroll only works with windows opened with
the gimme00 flag set (#gimmezerozero=$400).

WBlit shape#,x,y
Used to blit any shape to the current window. Completely system friendly this command
will completely clip the shape to fit inside the visible part of the window Use
GIMMEZEROZERO windows for clean clipping when the window has title/sizing gadgets.

BitMaptoWindow bitmap#,window#[srox,srcy,destx,desty,width,height]
Copies a bitmap to a window in an operating system friendly manner (what do you expect).
The main use of such a command is for programs which use the raw bitmap commands
such as the 2D and Blit libraries for rendering bitmaps quickly but require a windowing
environment for the user interface.

Page 197

EventCode
Returns the actual code of the last event received by your program.

EventQualifier
Returns the contents of the qualifier field. Of use with the new GadTools library and some
other low level event handling requirements.

WindowTags window#,flags,title$,[&tagList]
WindowTags window#,flags,title$,[[Tag,Data]...]
Similar to ScreenTags, WindowTags allows the advanced user to open a Blitz window with a
list of OS tags as described in the documentation for the OS prior to 2.0.

LoadFont intuifont#,fontname.font$,ysize[,style]
Used to load a font from the fonts: directory. Unlike BlitzFonts any size intuifont can be
used. The command WindowFont is used to set text output to a certain intuifont in a
particular window. This command has been extended with an optional style parameter.
The following constants may be combined:

#underl ined = 1
#bold = 2
#italic = 4
#extended = 8 ;wider than normal
#colour = 64 ;hmm use colour version I suppose

Page 198

R-24: GADGETS

Blitz provides extensive support for the creation and use of Intuition gadgets. This is done
through the use of GadgetList objects. Each GadgetList may contain one or more of the
many types of available gadgets, and may be attached to a window when that window is
opened using the Window command.

Following is a table of gadget flags and gadget types which they are relevant to:

Bit# Value Meaning Text String Prop Shape
0 $1 Toggle on/off yes no no yes
1 $2 Relative to right side of window yes yes yes yes
2 $4 Relative to bottom of window yes yes yes yes
3 $8 Size relative to width of window no no yes no
4 $10 Size relative to height of window no no yes no
5 $20 Box select yes yes yes yes
6 $40 Prop gadget has horizontal movement no no yes no
7 $80 Prop gadget has vertical movement no no yes no
8 $100 No border around prop gadget no no yes no
9 $200 Mutually exclusive yes yes no no
10 $400 Attach to window’s right border yes yes yes yes
11 $800 Attach to window’s left border yes yes yes yes
12 $1000 Attach to window’s top border yes yes yes yes
13 $2000 Attach to window’s bottom border yes yes yes yes
14 $4000 Use GimmeZeroZero border yes yes yes yes

Note: If relative right is set, the gadget’s x should be negative, as should it’s y if relative to
bottom is set. When relative width or height flags are set, negative width and/or height
parameters should be specified as Intuition calculates actual width as
windowwidth+gadgetwidth as it does height when relative size flags are set. Mutually
exclusive radio button type gadgets DO NOT require Kickstart 2.0 to operate. See
ButtonGroup for more information.

The attach flags are for attaching the gadget to one of the windows borders, the
GZZGADGET flag is for attaching the gadget to the "outer" rastport/layer of a gimme zero
zero window.

Here is an example of setting up some radio button style text gadgets:

TextGadget 0,16,16,512,1,"0PTION 1"
Toggle 0,1,on
TextGadget 0,16,32,512,2,"OPTION 2"
TextGadget 0,16,48,512,3,"OPTION 3"

Page 199

Text Gadgets may now be used to create ‘cycling’ gadgets. Again, these gadgets DO NOT
require Kickstart 2.0 to work. A text gadget could contain the ‘|’ character in the gadget's
text as Blitz will recognise this as a ‘cycling’ gadget. Use the ‘|’ character to separate the
options, like this:

TextGadget 0|6|6,0|,"HELLO|GOODBYE|SEEYA|"

Now, each time this gadget is clicked on, the gadgets text will cycle through ‘HELLO’,
‘GOODBYE’ and ‘SEEYA’. Note that each option is spaced out to be of equal length. This
feature should not be used with a GadgetJam mode of 0.

TextGadget gadgetlist#,x,y,flags,id,text$
This command adds a text gadget to a gadgetlist. A text gadget is the simplest type of
gadget consisting of a sequence of characters optionally surrounded by a border.

Flags should be selected from the table at the start of the chapter. Boolean gadgets are the
simplest type of gadget available. Boolean gadgets are ‘off’ until the program user clicks on
them with the mouse, which turns them ‘on’. When the mouse button is released, these
gadgets revert back to their ‘off’ state. Boolean gadgets are most often used for ‘Ok’ or
‘Cancel’ type gadgets.

Toggle gadgets differ in that each time they are clicked on they change their state between
‘on’ and ‘off’. For example, clicking on a toggle gadget which is ‘on’ will cause the gadget to
be turned ‘off’, and vice versa.

X and y specify where in the window the gadget is to appear. Depending upon the flags
setting, gadgets may be positioned relative to any of the 4 window edges. If a gadget is to
be positioned relative to either the right or bottom edge of a window, the appropriate x or y
parameter should be negative.

The id parameter is an identification value to be attached to this gadget. All gadgets in a
gadgetlist should have unique id numbers allowing you to detect which gadget has been
selected. An id may be any positive, non-zero number.

Text$ is the actual text you want the gadget to contain.

ButtonGroup group
Allows you to determine which ‘group’ a number of button type gadgets belong to.
Following the execution of ButtonGroup, any button gadgets created will be identified as
belonging to the spiecified group. The upshot of all this is that button gadgets are only
mutually exclusive to other button gadgets within the same group. Group must be a
positive number greater than 0. Any button gadgets created before a ButtonGroup
command is issued will belong to group 1.

Page 200

SetGadgetStatus gadgetlist#,id,value
Used to set a cycling text gadget to a particular value, once set, ReDraw should be used to
refresh the gadget to reflect its new value.

GadgetPens forecolour[,backcolour]
Determines the text colours used when text gadgets are created using the TextGadget
command. The default values used for gadget colours are a foreground colour of 1, and a
background colour of 0.

GadgetJam mode
Allows you to determine the text rendering method used when gadgets are created using
the TextGadget command. Please refer to the WJam command in the windows chapter for
a full description of jam modes available.

SelectMode mode
Used to pre-define how gadget rendering will show a gadget selection. Mode can be 0 for
inverse or 1 for box. Use prior to creation of gadgets.

ShapeGadget gadgetlist#,x,y,flags,id,shape#[,shape#]
Allows to create gadgets with graphic imagery. Shape# refers to a shape object containing
the graphics you wish the gadget to contain. This command has been extended to allow an
alternative image to be displayed when the gadget is selected.

All other parameters are identical to those in TextGadget.

StringGadget gadgetlist#,x,y,flags,id,maxlen,width
Allows to create an Intuition style ‘text entry’ gadget. When clicked on, a string gadget
brings up a text cursor, and is ready to accept text entry trom the keyboard.

X and y specifies the gadgets position, relative to the top left of the window it is to appear
in. See the beginning of the chapter for the relevant flags for a string gadget.

The id is an identification value to be attached to this gadget. All gadgets in a gadgetlist
should have unique id numbers allowing you to detect which gadgets has been selected. It
may be any positive, non-zero number.

Maxlen refers to the maximum number of characters which may be entered.

Page 201

Width refers to how wide (in pixels) the gadget should be. A string gadget may have a width
less than the maximum number of characters it may contain, as characters will be scrolled
through the gadget when necessary.

You may read the current contents of a string gadget using the StringText function.

StringText$(gadgetlist#,id)
Allows you to determine the current contents of a string gadget. It will return a string of
characters representing the string gadgets contents.

ActivateString window#,id
May be used to ‘automatically’ activate a string gadget. This is identical to the program
user having clicked in the string gadget themselves as the string gadget’s cursor will
appear, and further keystrokes will be sent to the string gadget.

It is often nice of a program to activate important string gadgets as it saves the user the
hassle of having to reach the mouse before the keyboard.

ResetString gadgetlist#,id
Allows you to ‘reset’ a string gadget. This will cause the string gadget’s cursor position to
be set to the left-most position.

ClearString gadgetlist#,id
May be used to clear or erase the text in the specified string gadget. The cursor position
will also be moved to the left-most position in the string gadget. If a string gadget is
cleared while it is displayed in a window, the text will not be erased from the actual display.
To do this, ReDraw must be executed.

SetString gadgetlist#,id,string$
May be used to initialise the contents of a string gadget created with the StringGadget
command. If the string gadget specified by gadgetlist# and id is already displayed, you will
also need to execute ReDraw to display the change.

PropGadget gadgetlist#,x,y,flags,id,width,height
Used to create a ‘proportional gadget’. Proportional gadgets present a program user with a
‘slider bar’, allowing them to adjust the slider to achieve a desired effect. For example,
proportional gadgets are commonly used for RGB sliders seen in many paint packages.

Proportional gadgets have 2 main qualities - a ‘pot’ (short for potentiometer) setting, and a
body setting.

Page 202

The pot setting refers to the current position of the slider bar and is in the range 0 through
1. For example, a proportional gadget which has been moved to half way would have a pot
setting of '0.5'.

The body setting refers to the size of the units the proportional gadget represents, and is
again in the range 0 through 1. Again, taking the RGB colour sliders as an example, each
slider is intended to show a particular value in the range 0 through 15 - giving a unit size, or
body setting, of 1/16 or ‘.0625’.

Put simply, the pot setting describes ‘where’ the slider bar is, while the body setting
describes ‘how big’ it is. Proportional gadgets may be represented as either horizontal
slider bars, vertical slider bars, or a combination of both. See the beginning of the chapter
for relevant flags settings for prop gadgets.

X and y refer to the gadget position, relative to top left of the window it is opened in.

Width and height refer to the size of the area the slider should be allowed to move in.

The id is a unique, non zero value which allows to identify when the gadget is manipulated.
Proportional gadgets may be altered using the SetVProp and SetHProp commands and be
read using the VPropPot, VPropBody, HPropPot and HPropBody functions.

SetHProp gadgetlist#,id,pot,body
Used to alter the horizontal slider qualities of a proportional gadget.

Both pot and body should be in the range 0 through 1.

If executed while the specified gadget is already displayed, the ReDraw command will be
necessary to display the changes. For a full discussion on proportional gadgets, please
refer to the PropGadget command.

SetVProp gadgetlist#,id,pot,body
Used to alter the vertical slider qualities of a proportional gadget. Both pot and body should
be in the range 0 through 1.

If executed while the specified gadget is already displayed, ReDraw command will be
necessary to display the changes.

HPropPot(gadgetlist#,id)
Returns the current pot setting of a proportional gadget. A number will be returned from 0
up to, but not including, 1, reflecting the gadgets current setting.

HPropBody(gadgetlist#,id)
Returns the current body setting of a proportional gadget. A number will be returnedf from
0 up to, but not including, 1, reflecting the gadgets current setting.

Page 203

VPropPot(gadgetlist#,id)
Returns the current pot setting of a proportional gadget. A number will be returned from 0
up to, but not including, 1, reflecting the gadgets current setting.

VPropBody(gadgetlist#,id)
Allows you to determine the current 'body' setting of a proportional gadget. A number will
be returned from 0 up to, but not including, 1, reflecting the gadgets current setting.

Redraw window#,id
Will redisplay the specified gadget in the specified window. This command is mainly of use
when a proportional gadget has been altered using SetHProp or SetVProp and needs to be
redrawn, or when a string gadget has been cleared using ClearString, and, likewise, needs
to be redrawn.

Borders [On|Off]
Borders [width,height]
This serves two purposes. First, Borders may be used to turn on or off the automatic
creation of borders around text and string gadgets. Borders are created when either a
TextGadget or StringGadget command is executed. If you wish to disable this, Borders Off
should be executed before the appropriate TextGadget or StringGadget command.

Borders may also be used to specify the spacing between a gadget and its border, width
referring to the left/right spacing, and height to the above/below spacing.

BorderPens highlightcolour,shadowcolour
Allows you to control the colours used when gadget borders are created. Gadget borders
may be created by TextGadget, StringGadget and GadgetBorder. Highlightcolour refers to
the colour of the top and left edges of the border, while shadowcolour refers to the right
and bottom edges. The default value for highlightcolour is 1 and the default value for
shadowcolour is 2.

Gadget Border x,y,width,height
May be used to draw a rectangular border into the currently used window. Proportional
gadgets and shape gadgets do not automatically have borders created tor them. This
command may be used once a window is opened to render borders around these gadgets.

X, y, width and height refer to the position of the gadget a border is required around. This
will automatically insert spaces between the gadget and the border and may be used to
alter the amount of spacing. Of course, GadgetBorder may be used to draw a border
around any arbitary area, regardless of whether or not that area contains a gadget.

Page 204

GadgetStatus(gadgetlist#,id)
May be used to determine the status of the specified gadget. In the case of toggle type
gadgets, GadgetStatus will return true (-1) if the gadget is currently on, or false (0) if the
gadget is currently off. In the case of a cycling text gadget, GadgetStatus will return a value
of 1 or greater representing the currently displayed text within the gadget.

ButtonId(gadgetlist#,buttongroup)
Used to determine which gadget within a group of button type gadgets is currently
selected. The value returned will be the ID number of the button gadget currently selected.

Enable gadgetlist#,id
Disable gadgetlist#,id
A gadget when disabled is covered by a ‘mesh’ and can not be accessed by the user.
Commands Enable & Disable allow the programmer to access this feature of Intuition.

Toggle gadgetlist#,id[,On|Off]
This command in the gadget library has been extended so it will actually toggle a gadgets
status if the On|Off parameter is missing.

Page 205

R-25: MENUS

Blitz supports many commands for the creation and use of Intuition menus which are
created through the use of menulist objects. Each menulist contains an entire set of menu
titles, menu items and possibly sub menu items and are attached to windows through the
SetMenu command. Each window may use a separate menulist, allowing you to attach
relevant menus to different windows.

MenuTitle menulist#,menu,title$
Used to add a menu title to a menulist. Menu titles appear when the right mouse button is
held down, and usually have menuitems attached to them.

Menu specifies which menu the title should be used for. Higher numbered menus appear
further to the right along the menu bar with 0 being the left-most menu. Menu titles should
be added in left to right order with menu 0 being the first created, then 1 and so on...

Title$ is the actual text you want to appear when the right mouse button is pressed.

Menultem menulist#,flags,menu,item,itemtext$[,shortcut$]
Used to create a text menu item. Menu items appear vertically below menu titles when
mouse is moved over a menu title with the right mouse button held down.

Flags affects operation of menu item. A value of 0 creates a stand ‘select’ menu item.

A value of 1 creates a ‘toggle’ menu item. Toggle menu items are used for ‘on/off’ type
options. When a toggle menu item is selected, it will change state between on and off. An
‘on’ toggle item is identified by a ‘tick’ or check mark.

A value of 2 creates a special type of toggle menu item. Any menu items which appear
under the same menu with a flags setting of 2 are said to be mutually exclusive. This
means that only 1 of them may begin the ‘on’ state at one time. If a menu item of this
nature is toggled into the ‘on’ state, any other mutually exclusive menu items which may
have previously been 'on' will be automatically turned ‘off’.

Flags values of 3 and 4 correspond to values 1 and 2, only the item will initially appear in
the ‘on’ state.

Menu specifies the menu title under which the menu item should appear.

Item specifies the menu item number this menu item should be referenced as. Higher
numbered items appear further down a menu item list, with 0 being topmost item. Menu
items should be added in 'top down' order, with item 0 being the first item created.

Itemtext$ is the actual text for the menu item.

Page 206

An optional shortcut$ string allows you to select a one character ‘keyboard shortcut’ for the
menu item.

Shapeltem menulist#,flags,menu,item,shape#
Used to create a graphical menu item.

Shape# refers to a previously initialised shape object to be used as the menu item’s
graphics. All other parameters are identical to those for menuitem.

Subitem menulist#,flags,menu,item,subitem,subitem text$[,shortcut$]
All menu items may have an optional list of sub menu items attached to them.

To attach a sub menu item to a menu item, you use the this command.

Item specifies the menu item to attach the sub item to.

Subitem refers to the number of the sub menu items to attach. Higher numbered sub items
appear further down a sub item list with 0 being the topmost sub item. Sub items should
be added in ‘top down’ order, with sub item 0 being created first.

Subitemtext$ specifies the actual text for the sub item. As with menu items, sub items may
have an optional keyboard shortcut, specified using shortcut$ parameter.

All other parameters are identical to the MenuItem command.

ShapeSub menulist#,flags,menu,item,subitem,shape#
Allows you to create a graphic sub menu item. Shape# specifies a previously created
shape object to be used as the sub item’s graphics.

All other parameters are identical to those in SubItem.

SetMenu menulist#
Used to attach a menulist to the currently used window. Each window may have only one
menulist attached to it.

MenuGap xgap,ygap
Executing MenuGap before creating any menu titles, items or sub items, allows you to
control the layout of the menu.

Xgap refers to an amount, specified in pixels, to be inserted to the left and right of all menu
items and sub menu items. Ygap refers to an amount, again in pixels, to be inserted above
and below all menu items and sub menu items.

Page 207

SubItemOff xoffset,yoffset
Allows you to control the relative position of the top of a list of sub menu items, in relation
to their associated menu item. Whenever a menu item is created which is to have sub
menu items, it's a good idea to append the name of the menu item with the ‘>>’ character.
This may be done using Chr$(187). This gives the user a visual indication that more options
are available. To position the sub menu items correctly so that they appear after the ‘>>’
character, SubItemOff should be used.

MenuState menulist#[menu[,item[,subitem]]],On|Off
Allows you to turn menus, or sections of menus, on or off. MenuState with just menulist#
parameter it's used to turn an entire menu list on or off. MenuState with menulist# and
Menu parameters may be used to turn a menu on or off. Similarly, menu items and sub
items may be turned on or off by specifying the appropriate parameters.

MenuColour colour
Allows to determine what colour any menu item or sub item text is rendered in.
MenuColour should be executed before appropriate menu item commands.

MenuChecked(menulist#,menu,item[,subitem]
Allows you to tell whether or not a ‘toggle’ type menu item or menu sub item is currently
‘checked’ or ‘on'. If the specified menu item or sub item is in fact checked, it will return
'true' (-1). If not, it will return 'false' (0).

Page 208

R-26: GADTOOLS

GadTools is a new system of Gadgets added to the Amiga’s OS in version 2.0. They are
improved in both looks and performance over the older standard gadgets. In order for
certain GadTools gadgets to tunction correctly the first thing to make sure is that the
window has the correct IDCMP flags set:

#MOUSEMOVE=$10 ;needed when user drags a slider
#INTUITICKS=$400000 ;needed

When the user holds down an arrow AddIDCMP#MOWSEMOVE+#INTUITICKS.

To add GadTools gadgets to the window simply create a list from the commands listed
below and use the AttachGTList command to add them to the window.

For most GTGadgets your program should only act on a #GadgetUp message. The
GadgetHit function will return the id of the gadget the user has just hit and the EventCode
function will contain its new value.

Use GTGetString and GTGetInteger functions to read the contents of the GadTools string
gadgets after a #GadgetUp message.

GadgetFlag Value Comment
#_LEFT 1 Position of text label
#_RIGHT 2
#_ABOVE 4
#_BELOW 8
#_IN $10
#_Highlight $20 Gadget is highlighted initially
#_Disable $40 Gadget is disabled initially
#_Immediate $80 Report GadgetDown flag
BoolValue $100 Gadget is on initially
#_Scaled $200 Scale arrowsize on scroller gadget
Vertical $400 Make GTPropGadget vertical

GTButton gtlist#,id,x,y,w,h,text$,flags
Same as Blitz's TextGadget but with the added flexibility of placing the label text$ above,
below, to the left or right of the button (see flags).

GTCheckBox gtlist#,id,x,y,w,h,text$,flags
A box with a check mark that toggles on and off, best used for options that are either
enabled or disabled.

Page 209

GTCycle gtlist#,id,x,y,w,h,text$,flags,options$
Used for offering the user a range of options, the options string should be a list of options
separated by the | character. For example, "HIRES|LORES|SUPER HIRES "

GTlnteger gtlist#,id,x,y,w,h,text$,flags,default
A string gadget that allows only numbers to be entered by the user. See GTSetInteger and
GTGetInteger for information about accessing the contents of a GTInteger gadget.

GTListView gtlist#,id,x,y,w,h,text$,flags,list
A ListView gadget enables user to scroll through a list of options. These options must be
contained in a string field of a Blitz linked list. Currently this string field must be the second
field, the first being a word type. See the GTChangeList command for more details.

GTMX gtlist#,id,x,y,w,h,text$,flags,options$
This is an exclusive selection gadget, the options$ is the same as GTCycle in format,
GadTools then displays all the options in a vertical list each with a hi-light beside them.

GTNumber gtlist#,id,x,y,w,h,text$,flags,value
This is a readonly gadget (the user cannot interact with it) used to display numbers. See
GTSetInteger to update the contents of this read only ‘display’ gadget.

GTPalette gtlist#,id,x,y,w,h,text$,flags,depth
Creates a number of coloured boxes relating to a colour palette.

GTScroller gtlist#,id,x,y,w,h,text$,flags,visible,total
A prop type gadget for the user to control an amount or level, is accompanied by a set of
arrow gadgets.

GTSlider gtlist#,id,x,y,w,h,text$,flags,min,max
Same as Scroller but for controlling the position of the display inside a larger view.

GTString gtlist#,id,x,y,w,h,text$,flags,maxchars
A standard string type gadget. See GTSetString and GTGetString for accessing the contents
of a GTString gadget.

Page 210

GTText gtlist#,id,x,y,w,h,text$,flags,display$
A read only gadget (see GTNumber) for displaying text messages. See GTSetString for
updating the contents of this read only ‘display’ gadget.

GTShape gtlist#,id,x,y,flags,shape#[,shape#]
Similar to the Blitz ShapeGadget allowing IFF graphics that are loaded into Blitz shape
objects to be used as gadgets in a window.

AttachGTList gtlist#,window#
The AttachGTList command is used to attach a set of GadTools gadgets to a window after it
has been opened.

GTTags tag,value,[tag,value...]
Can be used prior to initialisation of any of the 12 GadTools gadgets to preset any relevant
tag fields. The following are some useful tags that can be used with GTTags:

Tag Value Comment
#GTCB Checked $80080004 State of checkbox
#GTLV_Top $80080005 Top visible item in listview
#GTLV_ReadOnly $80080007 Set TRUE if lisiview is ReadOnly
#GTMX_Active $8008000A Active one in mx gadget
#GTTX_Text $8008000B Text to display
#GTNM_Number $8008000C Number to display
#GTCY_Active $8008000F The active one in the cycle gad
#GTPA_Color $80080011 Palette color
#GTPA ColorOffset $80080012 First color to use in palette
#GTSC_Top $80080015 Top visible in scroller
#GTSC_Total $80080016 Total in scroller area
#GTSC_Visible $80080017 Number visible in scroller
#GTSL_Level $80080028 Slider level
#GTSL_MaxLevelLen $80080029 Max length of printed level
#GTSL_LevelFormat $8008002A Format string for level *
#GTSL_LevelPlace $8008002B Where level should be placed *
#GTLV_Selected $80080036 Set ordinal number of selected
#GTMX_Spacing $8008003D Added to font height *

All of the above except for those marked * can be set after initialisation of the gadget using
the GTSetAttrs command.

Page 211

The following is an example of creating a slider gadget with a numeric display:

f$="%21d "
GTTags #GTSLLevelFormat,&f$,#GTSLMaxLevelLen,4GTSlider
2,10,320,120,200,20,"GTSLIDER",2,0,10

GTGadPtr(gtlist#,id)
Returns the actual location of the specified GadTools gadget in memory.

GTBevelBox gtlist#,x,y,w,h,flags
This is the GadTools library equivalent of the Borders command and can be used to render
frames and boxes in the currently used window.

GTChangeList gtlist#,id[,list()]
Must be used whenever a list attached to a GTListView needs to be modified. Call
GTChangeList without the list() parameter to free the list, modify it then reattach it with
another call to GTChangeList this time using the list() parameter.

GTSetAttrs gtlist#,id[,tag,value...]
Can be used to modify the status of certain GadTools gadgets with the relevant tags. See
GTTags for more information.

GTSetString gtlist#,id,string$
Used with both GTString and GTText gadgets, GTSetString will not only update the contents
of the gadget but redraw it also.

GTSetInteger gtlist#,id,value
Used with both GTInteger and GTNumber gadgets, GTSetInteger will not only update the
contents of the gadget but redraw it also.

GTGetString gtlist#,id
Used to read the contents from a GTString gadget.

GTGetInteger gtlist#,id
Used to read the contents from a GTlnteger gadget.

Page 212

GTGetAttrs(gtlist#,id,tag)
A 3.0 specific command. See Commodore documentation for more information.

GTEnable gtlist#,id
Allows GTGadgets to be enabled and disabled.

GTDisable gtlist#,id
Allows GTGadgets to be enabled and disabled.

GTToggle gtlist#,id[,On|Off]
Allows the programmer to set boolean gadgets such as GTButton and GTCheckbox to a
desired state.

GTStatus(gtlist#,id)
Returns the status of the gadtools toggle gadgets, a value of 1 means the the gadget is
selected, 0 deselected.

Page 213

R-27: ASL LIBRARY

The ASL library features several friendly requesters that programs can use on machines
equipped with Workbench 2.0 and above.

ASLFileRequest$(title$,pathname$,filename$[,pattern$][,x,y,w,h])
The ASL file requester is nice. Except for the highlight bar being invisible on directories you
get to use keyboard for everything. Stick in a pattern$ to hide certain files and of course
you get whatever size you want. I made it call the Blitz file requester if the program is
running under 1.3 (isn’t that nice!). There’s a fix that patches the ReqTools file requester
but that doesn't have the date field.

ASLPathRequest$(title$,pathname$[,x,y,w,h])
Same as ASLFileRequest$ except will just prompt the user for a path name (directory)
rather than an actual file.

ASLFontRequest(enableflags)
The flags parameter enables the user to modify the following options:

#pen = 1
#bckgrnd = 2
#style = 4
#drawmode = 8
#fixsize = 16

It doesn’t seem to handle colour fonts, no keyboard shortcuts so perhaps patching
ReqTools is an option for this one. The following code illustrates how a .fontinfo structure is
created by a call to ASLFontRequest.

Page 214

ASLScreenRequest(enableflags)
Those who are just getting to grips with 2.0 and above will find this command makes your
programs look really good however, I haven’t got time to explain the difficulties of
developing programs that work in all screen resolutions.

NEWTYPE .fontinfo
 name.s
 ysize.w
 style.b:flags.b
 pen1.b:pen2:drawmode:pad
End NEWTYPE

FindScreen 0

*f.fontinfo=ASLFontRequest(15)
If *f
 NPrint *f\name
 NPrint *f\ysize
 NPrint *f\penl
 NPrint *f\pen2
 NPrint *f\drawmode
Else
 NPrint "cancelled"
Endif

MouseWait

Page 215

R-28: AREXX

ARexx allows communication between different Amiga applications allowing for some
extensive and powerful control over applications by the programmer.

CreateMsgPort (“Name”)
This is a general function and not specific to ARexx.

It opens an Intuition PUBLIC message port of the name supplied as the only argument. If
all is well the address of the port created will be returned to you as a LONGWORD so the
variable that you assign it to should be of type long. If you do not supply a name then a
private MsgPort will be opened for you.

Port.l=CreateMsgPort(“PortName”)

It is important that you check you actually succeeded in opening a port in your program.
The following code or something similar will suffice.

Port.l=CreateMsgPort(“Name”)
If Port=0 THEN Error_Routine{ }

The name you give your port will be the name that Arexx looks for as the HOST address,
(and is case sensitive) so take this into consideration when you open your port. NOTE IT
MUST BE A UNIQUE NAME AND SHOULD NOT INCLUDE SPACES. DeleteMsgPort() is used
to remove the port later but this is not entirely necessary as Blitz will clean up for you on
exit if need be.

DeleteMsgPort(Port)
Deletes a messageport previously allocated with CreateMsgPort(). The only argument
taken by DeleteMsgPort is the address returned by CreateMsgPort(). If the port was a
public port then it will be removed from the public port list.

Port.l=CreateMsgPort(“Name”)
If Port=0 Then End DeleteMsgPort Port

Error checking is not critical as if this fails we have SERIOUS PROBLEMS.

YOU MUST WAIT FOR ALL MESSAGES FROM AREXX TO BE RECEIVED BEFORE YOU
DELETE THE MSGPORT. IF YOU NEGLECT TO DELETE A MSGPORT BLITZ2 WILL DO IT FOR
YOU AUTOMATICALLY ON PROGRAM EXIT.

Page 216

CreateRexxMsg(replyport,“exten”,“HOST”)
Allocates a special Message structure used to communicate with Arexx. If all is successful
it returns the LONGWORD address of this rexxmsg structure.

The arguments are ReplyPort which is the long address returned by CreateMsgPort(). This
is the port that ARexx will reply to after it has finished with the message.

EXTEN which is the exten name used by any ARexx script you are wishing to run. ie if you
are attempting to run the ARexx script test.rexx you would use an EXTEN of “rexx” HOST is
the name string of the HOST port. Your program is usually the HOST and so this equates to
the name you gave your port in CreateMsgPort(). REMEMBER IT IS CASE SENSITIVE.

As we are allocating resources error checking is important and can be achieved with the
following code:

msg.l=CreateRexxMsg(Port,”rexx”,”HostName”) IF msg=0 THEN Error_Routine{}

DeleteRexxMsg rexxmsg
Simply deletes a RexxMsg Structure previously allocated by CreateRexxMsg(). It takes a
single argument which is the long address of a RexxMsg structure such as a value returned
by CreateRexxMsg().

msg.l=CreateRexxMsg(Port,”rexx”,”HostName”) IF msg=0 THEN ErrorRoutine{}
DeleteRexxMsg msg

Again if you neglect to delete the RexxMsg structure Blitz will do this for you on exit of the
program.

ClearRexxMsg Arexxmsg
Used to delete and clear an argstring from one or more of the argument slots in a RexxMsg
structure. This is most useful for the more advanced programmer wishing to take
advantage of the Arexx #RXFUNC abilities. The arguments are a LONGWORD address of a
RexxMsg structure. ClearRexxMsg will always work from slot number 1 forward to 16.

FillRexxMsg(rexxmsg,&fillstruct)
Allows you to fill all 16 ARGSlots if necessary with either argstrings or numerical values
depending on your requirement. FillRexxMsg will only be used by those programmers
wishing to do more advanced things with ARexx, including adding libraries to the ARexx
library list, adding hosts, value tokens etc. It is also needed to access ARexx using the
#RXFUNC flag. The arguments are a LONG Pointer to a rexxmsg. The LONG address of a
FillStruct NEWTYPE structure. This structure is defined in the Arexx.res and has the
following form:

Page 217

NEWTYPE .FillStruct
 Flags.w ;Flag block
 Args0.l ;argument block (ARG0-ARG15)
 Args1.l ;argument block (ARG0-ARG15)
 Args2.l ;argument block (ARG0-ARG15)
 Args3.l ;argument block (ARG0-ARG15)
 Args4.l ;argument block (ARG0-ARG15)
 Args5.l ;argument block (ARG0-ARG15)
 Args6.l ;argument block (ARG0-ARG15)
 Args7.l ;argument block (ARG0-ARG15)
 Args8.l ;argument block (ARG0-ARG15)
 Args9.l ;argument block (ARG0-ARG15)
 Args10.l ;argument block (ARG0-ARG15)
 Args11.l ;argument block (ARG0-ARG15)
 Args12.l ;argument block (ARG0-ARG15)
 Args13.l ;argument block (ARG0-ARG15)
 Args14.l ;argument block (ARG0-ARG15)
 Args15.l ;argument block (ARG0-ARG15)
 EndMark.l ;End of the FillStruct
End NEWTYPE

The Args?.l are the 16 slots that can possibly be filled ready for converting into the RexxMsg
structure. The Flags.w is a WORD value representing the type of LONG word you are
supplying for each ARGSLOT (Arg?.l).

Each bit in the flags WORD is representative of a single Args?.l, where a set bit represents a
numerical value to be passed and a clear bit represents a string argument to be converted
into a argstring before installing in the RexxMsg. The flags value is easiest to supply as a
binary number to make the bits visible and would look like this.

%0000000000000000 ;represents that all Arguments are Strings.
%0110000000000000 ;represent second&third as being integers.

FillRexxMsg expects to find the address of any strings in the Args?.l slots so it is important
to remember when filling a fillstruct that you must pass the string address and not the
name of the string. This is accomplished using the ‘&’ address of operand. So to use
FillRexxMsg we must do the following things in our program:

1. Allocate a FillStruct
2. Set the flags in the FillStruct\Flags.w
3. Fill the FillStruct with either integer values or the addresses of our

string arguments.
4. Call FillRexxMsg with the LONG address of our rexxmsg and the LONG

address of our FillStruct.

Page 218

To accomplish this takes the following code:

;Allocate our FillStruct (called F)
DEFTYPE.FillStruct F
;assign some string arguments
T$=”open”:T1$=”-0123456789”
;Fill in our FillStruct with flags and (&) addresses of our strings
F\Flags=%0010000000000000,&T$,&T1$,4
;Third argument here is an integer (4).
Port.l=CreateMsgPort(“host”)
msg.l=CreateRexxMsg(Port,”vc”,”host”)
FillRexxMsg msg,&F
;<-3 ergs see #RXFUNC
SendRexxCommand msg,””,#RXFUNCI #RXFF RESULTI 3

CreateArgString(“this is a string”)
Builds an ARexx compatible argstring structure around the provided string. All strings sent
to, or received from ARexx are in the form of argstrings. See the TYPE RexxARG.

If all is well the return will be a LONG address of the argString structure. The pointer will
actually point to the NULL terminated String with the remainder of the structure available
at negative offsets.

DeleteArgString argstring
Designed to Delete argstrings allocated by either Blitz or ARexx in a system friendly way. It
takes only one argument the LONGWORD address of an argstring as returned by
CreateArgString().

SendRexxCommand rexxmsg,“commands/ring”,#RXCOMMI #RXFF_RESULT
Designed to fill and send a RexxMsg structure to ARexx inorder to get ARexx to do
something on your behalf. The arguments are as follows; rexxmsg, the LONGWORD
address of a RexxMsg structure as returned by CreateRexxMsg().

commands/ring: the command string you wish to send to ARexx. This is a string as in “this
is a string” and will vary depending on what you wish to do with ARexx. Normally this will
be the name of an ARexx script file you wish to execute. ARexx will then look for the script
by the name as well as the name with the exten added. (This is the exten you used when
you created the RexxMsg structure using CreateRexxMsg()). This could also be a string file.
That is a complete ARexx script in a single line.

actioncodes: the flag values you use to tell ARexx what you want it to do with the
commandstring you have supplied.

Page 219

COMMAND (ACTION) CODES
The command codes that are currently implemented in the resident process are described
below. Commands are listed by their mnemonic codes, followed by the valid modifier flags.
The final code value is always the logical OR of the code value and all of the modifier flags
selected. The command code is installed in the rm_Action field of the message packet.

RXADDCON:
This code specifies an entry to be added to the clip list. Parameter slot ARG0 points to the
name string, slot ARG1 points to the value string, and slot ARG2 contains the length of the
value string.

The name and value arguments do not need to be argstrings, but can be just pointers to
storage areas. The name should be a null-terminated string, but the value can contain
arbitrary data including nulls.

RXADDFH:
This action code specifies a function host to be added to the library list. Parameter slot
ARG0 points to the (null-terminated) host name string, and slot ARG1 holds the search
priority for the node. The search priority should be an integer between 100 and -100
inclusive, the remaining priority ranges are reserved for future extensions. If a node already
exists with the same name, the packet is returned with a warning level error code.

Note that no test is made at this time as to whether the host port exists.

RXADDLIB:
This code specifies an entry to be added to the library list. Parameter slot ARG0 points to a
null-terminated name string referring either to a function library or a function host. Slot
ARG1 is the priority for the node andshould be an integer between 100 and -100 inclusive;
the remaining priority ranges are reserved for future extensions. Slot ARG2 contains the
entry Point offset and slot ARG3 is the library version number. If a node already exists with
the same name,the packet is returned with a warning level error code. Otherwise,a new
entry is added and the library or host becomes available to ARexx programs. Note that no
test is made at this time as to whether the library exists and can be opened.

Page 220

RXCOMM [RXFF_TOKEN] [RXFF STRING] [RXFF_RESULT] [RXFF NOIO]
Specifies a command-mode invocation of an ARexx program. Parameter slot ARG0 must
contain an argstring Pointer to the command string. The RXFB TOKEN flag specifies that
the command line is to be tokenised before being passed to the invoked program. The
RXFB_STRING flag bit indicates that the command string is a “string file.” Command
invocations do not normally return result strings, but the RXFB_RESULT flag can be set if
the caller is prepared to handle the cleanup associated with a returned string. The
RXFB_N010 modifier suppresses the inheritance of the host's input and output streams.

RXFUNC [RXFF_RESULT] [RXFF STRING] [RXFF_NOIO] argcount
This command code specifies a function invoction. Parameter slot ARG0 contains a pointer
to the function name string, and slots ARG1 through ARG15 point to the argument strings,
all of which must be passed as argstrings. The lower byte of the command code is the
argument count, this count excludes the function name string itself. Function calls normally
set the RXFB_RESULT flag,but this is not mandatory. The RXFB_STRING modifier indicates
that the function name string is actually a “string file”. The RXFB_N010 modifier
suppresses the inheritance of the host's input and output streams.

RXREMCON:
This code requests that an entry be removed from the clip list. Parameter slot ARG0 points
to the null-terminated name to be removed. The clip list is searched for a node matching
the supplied name, and if a match is tound the list node is removed and recycled. If no
match is found the packet is returned with a warning error code.

RXREMLIB:
This command removes a library list entry. Parameter slot ARG0 points to the null
terminated string specifying the library to be removed. The library list is searched for a
node matching the library name,and if a match is found the node is removed and released.
If no match is found the packet is returned with a warning error code. The libary node will
not be removed if the library is currently being used by an ARexx program.

RXTCCLS:
This code requests that the global tracing console be closed. The console window will be
closed immediately unless one or more ARexx programs are waiting for input from the
console. In this event, the window will be closed as soon as the active programs are no
longer using it.

Page 221

RXTCOPN:
This command requests that the global tracing console be opened. Once the console is
open, all active ARexx programs will divert their tracing output to the console. Tracing input
(for interactive debugging)will also be diverted to the new console. Only one console can
be opened; subsequent RXTCOPN requests will be returned with a warning error message.

MODIFIER FLAGS
Command codes may include modifier flags to select various processing options. Modifier
flags are specific to certain commands,and are ignored otherwise.

RXFF_NOIO:
This modifier is used with the RXCOMM and RXFUNC command codes to suppress the
automatic inheritance of the host's input and output streams.

RXFF NONRET:
Specifies that the message packet is to be recycled by the resident process rather than
being returned to the sender. This implies that the sender doesn’t care about whether the
requested action succeeded,since the returned packet provides the only means of
acknowledgement. (RXFF_NONRET MUST NOT BE USED AT ANY TIME)

RXFF RESULT:
This modifer is valid with the RXCOMM and RXFUNC commands, and requests that the
called program return a result string. If the program EXITs (or RETURNs)with an
expression, the expression result is returned to the caller as an argstring. This argstring
then becomes the callers responsibility to release. This is automatically accomplished by
using GetResultString(). It is therefore imperitive that if you use RXFF_RESULT then you
must use GetResultString() when the message packet is returned to you or you will incure a
memory loss equal to the size of the argstring Structure.

RXFF_STRING:
This modifer is valid with the RXCOMM and RXFUNC command codes. It indicates that
command or function argument (in slot ARG0) is a “string file” rather than a file name.

Page 222

RXFF_TOKEN:
This flag is used with the RXCOMM code to request that the command string be completely
tokenised before being passed to the invoked program. Programs invoked as commands
normally have only a single argument string. The tokenization process uses “white space”
to separate the tokens, except within quoted strings. Quoted strings can use either single
or double quotes, and the end of the command string (a null character) is considered as an
implicit closing quote.

ReplyRexxMsg replyrexxmsg rexxmsg,result1,result2,“resultstring”
When ARexx sends you a RexxMsg (Other than a reply to yours ie. sending yours back to
you with results) you must repl to the message before ARexx will continue or free that
memory associated with that rexxmsg. ReplyRexxMsg accomplishes this for you.
ReplyRexxMsg also will only reply to message that requires a reply so you do not have to
include message checking routines in your source simply call ReplyRexxMsg on every
message you receive wether it is a command or not.

The arguments are:

rexxmsg is the LONGWORD address of the RexxMsg Arexx sent you as returned by
GetMsg_(Port).

Result1 is 0 or a severity value if there was an error.

Result2 is 0 or an Arexx error number if there was an error processing the command that
was contained in the message.

Resultstring is the result string to be sent back to Arexx. This will only be sent if Arexx
requested one and Resultl and 2 are 0.

ReplyRexxMsg rexxmsg,0,0,“THE RETURNED MESSAGE”

GetRexxResult() result.l=GetRexxResult(rexxmsg,resultnum)
Extracts either of the two result numbers from the RexxMsg structure. Care must be taken
with this Function to ascertain wether you are dealing with error codes or a resultstring
address. Basically if result 1 is zero then result 2 will either be zero or contain an argstring
pointer to the resultstring. This should then be obtained using GetResultString().

The arguments to GetRexxResult are:

rexxmsg is the LONGWORD address of a RexxMsg structure returned from ARexx.

Resultnum is either 1 or 2 depending on wether you wish to check result 1 or result 2.

Page 223

GetRexxCommand(rexxmsg,argnum)
Allows you access to all 16 argstring slots in the given RexxMsg. Slot 1 contains the
command string sent by ARexx in a command message so this allows you to extract the
command.

The arguments are:

rexxmsg is a LONGWORD address of the rexxmsg structure as returned by RexxEvent()

afgnum is an integer from 1 to 16 specifying the argstring slot you wish to get an argstring
from. YOU MUST KNOW THAT THERE IS AN ARGSTRING THERE.

GetResultString(rexxmag)
Allows you to extract the result string returned to you by ARexx after it has completed the
action you requested. ARexx will only send back a result string if you asked for one (using
the actioncodes) and the requested action was successful.

Wait
Halts all program execution until an event occurs that the program is interested in. Any
Intuition event such as clicking on a gadget in a window will start program execution again.

A message arriving at a msgport will also start program execution again. So you may use
Wait to wait for input from any source including messages from ARexx to your program.

Wait should always be paired with EVENT if you need to consider Intuition events in your
event handler loop.

RexxEvent(port)
Our ARexx equivalent of EVENT(). Its purpose is to check the given port to see if there is a
message waiting there for us. It should be called atter a WAIT and will either return a NULL
to us if there was no message or the LONG address of a rexxmsg structure if there was a
message waiting. Multiple ARexx msgports can be handled using separate calls to
RexxEvent():

Wait
Rmsg1.l=RexxEvent(Port1)
Rmsg2.l=RexxEvent(Port2)

RexxEvent also takes care of automatically clearing the rexxmsg if it is our message being
returned to us.

The argument is the LONG address of a MsgPort as returned by CreateMsgPort().

Page 224

IsRexxMsg(rexxmsg)
Tests the argument (a LONGWORD pointer hopefully to a message packet) to see if it is a
RexxMsg Packet. If it is TRUE is returned (1) or FALSE if it is not (0). As the test is non
destructive and extensive passing a NULL value or a LONGWORD that does not point to a
message structure (Intuition or ARexx) will return as FALSE.

RexxError() errorstring$=RexxError(errorcode)
Converts a numerical error code such as you would get from GetRexxResult (msg2) into an
understandable string error message. If the errorcode is not known to ARexx a string
stating so is returned ensuring that this function will always succeed.

Page 225

R-29: BREXX

The Blitz BRexx commands allow you to take control of certain aspects of Intuition.
Through BRexx, your programs can ‘fool’ Intuition into thinking that the mouse has been
played with, or the keyboard has been used. This is ideal for giving the ability to perform
‘macros’ - where one keystroke can set off a chain of pre-defined events.

The BRexx commands support tape objects. These are predefined sequences of events
which may be played back at any time. The convenient Record command can be used to
easily create tapes. Using the MacroKey command, tapes may also be attached to any
keystroke to be played back instantly at the push of a button!

Please note that none of the BRexx commands are available in Blitz mode.

AbsMouse x,y
Allows you to position the mouse pointer at an absolute display location. The x parameter
specifies how far across the display the pointer is to be positioned, while the y parameter
specifies how far down the display. X must be in the range zero through 639. Y must be in
the range zero through 399 for NTSC machines, or zero through 511 for PAL machines.

RelMouse xoffset,yoffset
Allows you to move the mouse pointer a relative distance from its current location. Positive
offset parameters will move the pointer rightwards and downwards, while negative offset
parameters will move the pointer leftwards and upwards.

MouseButton button,On|Off
Allows you to alter the status of the Amiga’s left or right mouse buttons. Button should be
set to zero to alter the left mouse button, or one to alter the right mouse button. On/Off
refers to whether the mouse button should be pressed (On) or released (Off).

ClickButton button
Identical to executing two MouseButton commands - one for pressing the mouse button
down, and one for releasing it. This can be used for such things as gadget selection.

Type string$
Causes Intution to behave exactly as if a certain series of keyboard characters had been
entered. These are normally sent to the currently active window.

Page 226

Record [tape#]
Allows you to create a tape object. Tape objects are sequences of mouse and/or keyboard
events which may be played back at any time. When a tape# parameter is supplied to the
Record command, recording will begin. From that point on, all mouse and keyboard activity
will be recorded onto the specified tape. The Record command with no parameters will
cause any recording to finish.

PlayBack [tape#]
Begins playback of a previously created tape object. When a tape# parameter is supplied,
playback of the specified tape will commence. If no parameter is supplied, any tape which
may be in the process of being played back will finish.

QuickPlay On|Off
Will alter the way tapes are played using the PlayBack command. If QuickPlay is enabled
by use of an On parameter, then all PlayBack commands will cause tapes to be played with
no delays between actions. This means any pauses which may be present in a tape (for
instance, delays between mouse movements) will be ignored when it is played back.
QuickPlay Off will return PlayBack to its default mode of including all tape pauses. This is
sometimes necessary when playing back tapes which must at some point wait for disk
access to finish before continuing.

PlayWait
May be used to halt program flow until a PlayBack of a tape has finished.

XStatus
Returns a value depending upon the current state of the BRexx system. Possible return
values and their meanings are as follows:

0 BRexx is currently inactive. No tapes are being recorded or played back.
1 BRexx is currently in the process of recording a tape. This may be due to

either the Record or TapeTrap commands.
2 BRexx is currently playing a tape back.

SaveTape tape#,filename$
Allows you to save a previously created tape object out to disk. This tape may later be
reloaded using LoadTape.

Page 227

LoadTape tape#,filename$
Allows you to load a tape object previously saved with SaveTape for use with the PlayBack
command.

TapeTrap [tape#]
Allows you to record a sequence of AbsMouse, RelMouse, MouseButton and ClickButton
events to a tape object. TapeTrap works similarly to Record, in that both commands are
used to create a tape. However, whereas Record receives information from the actual
mouse and keyboard, TapeTrap receives information from any AbsMouse, RelMouse,
MouseButton and ClickButton commands which may be executed. TapeTrap with no
parameter will finish tape creation.

QuietTrap On|Off
Determines the way in which any TapeTrapping will be executed. QuietTrap On will cause
any AbsMouse, RelMouse, MouseButton and ClickButton commands to be recorded to
tape, but not to actually have any effect on the porgram currently running.

QuietTrap Off will cause any AbsMouse, RelMouse, MouseButton and ClickButton
commands to be recorded to tape, AND to cause their usual effects. QuietTrap Off is the
default mode.

MacroKey tape#,rawkey,qualifier
Causes a previously defined tape object to be attached to a particular keyboard key.
Rawkey and qualifier define the key the tape should be attached to.

FreeMacroKey rawkey,qualifier
Causes a previously defined macro key to be removed so that a BRexx tape is no longer
attached to it.

Page 228

R-30: SERIAL PORT

The following are a set of commands to drive both the single RS232 serial port on an
Amiga as well as supporting multiserial port cards such as the A2232 card. The unit# in
the following commands should be set to 0 for the standard RS232 port, unit 1 refers to
the default serial port set by the advanced serial preferences program and unit 2 refer to
any extra serial ports available.

OpenSerial device$,unit#,baud,io_serflags
Used to configure a serial port for use. As with OpenFile, OpenSerial is a function and
returns zero if it fails. If it succeeds advanced users may note the return result is the
location of the IOExtSer structure. The device$ should be "serial.device" or compatible
device driver. The baud rate should be in the range of 110-292,000. The io_serflags
parameter can include the following flags:

#serf_xdisabled 128 Disable xon/xoff
#serf_eofmode 64 Enable eof checking
#serf_shared 32 Set if you don't need exclusive use of port
#serf_rad_boogie 16 High speed mode
#serf_queuedbrk 8 If set a break command waits for buffer empty
#serf_7wire 4 If set use 7 wire RS232
#serf_parity_odd 2 Select odd parity (even if not set)
#serf_parity_on 1 Enable parity checking

WriteSerial unit#,byte
Sends one byte to the serial port. Unit# defines which serial port is used. If you are sending
characters use the Asc() function to convert the character to a byte e.g.

WriteSerial 0,asc("b").

WriteSerialString unit#,string
Similar to WriteSerial but sends a complete string to the serial port.

ReadSerial(unit#)
Returns the next byte waiting in the serial port’s read buffer. If the buffer is empty it returns
-1. It is best to use a word type (var.w=ReadSerial(0)) as a byte will not be able to
differentiate between -1 and 255.

Page 229

ReadSerialString(unit#)
Puts the serial port’s read buffer into a string, if the buffer is empty the function will return
a null string (length=0).

CloseSerial unit#
Closes the port, enabling other programs to use it.

Note: Blitz will automatically close all ports that are opened when a program ends.

SetSerialBuffer unit#,bufferlength
Changes the size of the ports read buffer. This may be useful if your program is not always
handling serial port data or is receiving and processing large chunks of data. The smallest
size for the internal serial port (unit#0) is 64 bytes. The bufferlength variable is in bytes.

SetSerialLens unit#,readlen,writelen,stopbits
Allows you to change the size of characters read and written by the serial device. Generally
readlen=writelen and should be set to either 7 or 8, stopbits should be set to 1 or 2.
Default values are 8,8,1.

SetSerialParams unit#
For advanced users, SetSerialParams tells the serial port when parameters are changed.
This would only be necesary if they were changed by poking offsets from IOExtSer which is
returned by the OpenSerial command.

SerialEvent(unit#)
Used when your program is handling events from more than one source, Windows, ARexx
etc. This command is currently not implemented.

ReadSerialMem unit#,address,length
Will fill the given memory space with data from the given serial port.

WriteSerialMem unit#,address,length
Sends out the given memory space out the given serial port.

Page 230

APPENDIX 1: COMPILE TIME ERRORS

The following is a list of all the Blitz 2 compile time errors. Blitz 2 will print these messages
when unable to compile a line of your code and fails. The cursor will be placed on the line
with the offending error in most cases.

Sometimes the cause of the error will not be directly related to where Blitz 2 ceased
compiling. Any reference to an include file or a macro could mean the error is there and not
on the line referenced.

General Syntax Errors

Syntax Error: Check for typing mistakes and check your syntax with the reference manual.

Garbage at End of Line: A syntax error of sorts. Causes are usually typos and missing semi
colons from the beginning of Remarks. Also a .type suffix when accessing NewType items
will generate this error.

Numeric Over Flow: The signed value is too large to fit in the variable space provided, if you
need bytes to hold 0...255 rather than -128...127 etc turn off Overflow checking in the
runtime errors section of the Options requester.

Bad Data: The values following the Data.type statement are not of the same type as
precedes the Data statement.

Procedure Related Errors

Not Enough Parameters: The command, statement or function needs more parameters.
Use the HELP key for correct number and meaning of parameters with Blitz 2 commands
and check Statement and Function definitions in your code.

Duplicate Parameter Variable: Parmaters listed in statements and functions must be
unique.

Too Many Parameters: The statement or function was defined needing less parameters
than supplied by the calling routine.

Illegal Parameter Type: NewTypes cannot be passed to procedures.

Page 231

Illegal Procedure Return: The statement or function return is syntactically incorrect.

Illegal End Procedure: The statement or function end is syntactically incorrect.

Shared outside of Procedure: Shared variables are only applicable to procedures. Variable
already Shared: Shared variables must be unique in name.

Can't Nest Procedures: Procedures may NOT be defined within procedures, only from the
primary code.

Can't Dim Globals in Procedures: Global arrays may be only defined from the pumary code.

Can't Goto/Gosub a Procedure: Goto and Gosub must always point to an existing part of the
primary code.

Duplicate Procedure name: A procedure (statement or function) of the same name has
been defined previously in the source.

Procedure Not Found: The statement or function has not previously been defined in the
source code.

Unterminated Procedure: The End Function or End Statement commands must terminate a
procedure definition.

Illegal Procedure Call: The statement or function call is syntactically incorrect.

Illegal Local Name: Not a valid variable name.

Constants Related Errors

Can't Assign Constant: Constant values can only be assigned to constants, no variables
please.

Page 232

Constant Not Defined: A constant (such as #num) has been used in an expression without
first being defined.

Constant Already Defined: Constants can only be defined once, i.e. cannot change their
value through the code.

Illegal Constant: Same as Can't Assign Constant.

Fractions Not allowed in Constants: Blitz 2 constants can only contain absolute values, they
are usually rounded and no error is generated.

Can't Use Constant: Caused by a clash in constant name definitions.

Constant Not Found: Constant has not been defined previously in the source code.

Illegal Constant Expression: A constant may only hold whole numbers, either a decimal
place, text or a variable name has been included in the constant definition.

Expression Evaluation Errors

Can’t Assign Expression: The expression cannot be evaluated or the evaluation has
generated a value that is incompatible with the equate.

No Terminating Quote: Any text assigns should start and end with quotes.

Precedence Stack Overflow: You have attained an unprecedented level of complexity in
your expression and the Blitz 2 evaluation stack has overflowed. A rare beast indeed!

Illegal Errors

Illegal Trap Vector: The 68000 has only 16 trap vectors.

Illegal Immediate Value: An immediate value must be a constant and must be in range.
See the 68000 appendix for immediate value ranges.

Page 233

Illegal Absolute: The Absolute location specified must be defined and in range.

Illegal Displacement: Displacement location specified must be defined and in range.

Illegal Assembler Instruction Size: The Intstruction size is not available, refer to the 68000
appendix for relevant instruction sizes.

Illegal Assembler Addressing Mode: The addressing mode is not available for that opcode,
refer to the 68000 appendix for relevant addressing modes.

Library Based Errors

Illegal TokeJsr Token Number: Blitz 2 cannot find the library routine referred to by the
TokeJsr command, usually caused by the library not being included in DefLibs, not present
in the BlitzLibs: directory or the calculation being wrong (token number = libnumber* 128
+ token offset).

Library not Found: 'library number': Blitz2 cannot find the library routine referred to by a
Token, usually caused by the library not being'included in DeflLibs or the library not
present in the BlitzLibs: directories.

Token Not Found: 'token number': When loading source, Blitz 2 replaces any unfound
tokens with ?????, compiling your code with these unknown tokens present will generate
the above error.

Include Errors

Already Included: Same source code has already been included previously in the code.

Can't open Include: Blitz 2 cannot find the include file, check the pathname.

Error Reading File: DOS has generated an error during an include.

Page 234

Program Flow Based Errors

Illegal Else in While Block: See the reference section for the correct use of the Else
command with While...Wend blocks.

Until without Repeat: Repeat...Until is a block directive and both must be present.

Repeat Block too large: A Repeat...Until block is limited to 32000 bytes in length.

Repeat Without Until: Repeat...Until is a block directive and both must be present.

If Block Too Large: Blitz2 has a 32K limit for any blocks of code such as IF...ENDIF.

If Without End If: The IF statement has two forms, if the THEN statement is not present
then and END IF statment must be present to specify the end of the block.

Duplicate For...Next Error: The same variable has been used for a For...Next loop that is
nested within another For...Next loop.

Bad Type For For...Next: The For...Next variable must be of numeric type.

Next Without For: For...Next is a block directive and both commands must be present.

For...Next Block too Long: Blitz2 restricts all blocks of code to 32K in size.

For Without Next: For...Next is a block directive and both commands must be present.

Type Based Errors

Can't Exchange different Lopes: The Exchange command can only swap two variables of
the same type.

Can't Exchange NewTypes: Exchange command can ́t handle NewTypes at present.

Page 235

Type Too Big: The unsigned value is too large to fit in the variable space provided.

Mismatched Types: Caused by mixing different types illegaly in an evaluation.

Type Mismatch: Same as Mismatched Types.

Can't Compare Types: Some Types are incompatible with operations such as compares.

Can't Convert Types: The two Types are incompatible and one can not be converted to the
other.

Duplicate Offset (Entry) Error: The NewType has two entries of the same name.

Duplicated Type: A Type already exists with the same name.

End NewType without NewType: The NEWTYPE ...End NewType is a block directive and
both must be present.

Type Not Found: No Type definition exists for the type referred to.

Illegal Type: Not a legal type for that function or statement.

Offset Not Found: The offset has not been defined in the NewType definition.

Element Isn't A Pointer: The variable used is not a *var type and so cannot point to another
variable.

Illegal Operator For Type: The operator is not suited for the type used.

Too Many Comma's In Let: The NewType has less entries than the number of values listed
after the Let.

Page 236

Can't Use Comma In Let: The variable you are assigning multiple values is either not a
NewType and cannot hold multiple values or the NewType has only one entry.

Illegal Function Type: A function may not return a NEWTYPE .

Conditional Compiling Errors

CNIF/CSIF Without CEND: CNIF and CSIF are block directives and a CEND must conclude
the block.

CEND Without CNIF/CSIF...: CNIF...CEND is a block directive and both commands must be
present.

Resident Based Errors

Clash In Residents: Residents being very unique animals, must not include the same Macro
and Constant definitions.

Can't Load Resident: Blitz2 cannot find the Resident file listed in the Options requester.
Check the pathname.

Macro Based Errors

Macro Buffer Overflow: The Options requester in the Blitz2 menu contains a macro buffer
size, increase if this error is ever reported. May also be caused by a recursive macro call
which generates endless code.

Macro already Defined: Another macro with the same name has already been defined, may
have been defined in one of the included resident files as well as somewhere else in the
source code.

Can't Create Macro Inside Macro: Macro definitions must occur in the primary code.

Macro Without End Macro: End Macro must end a Macro definition.

Macro Too Big: Macro's are limited to the buffer sizes defined in the Options requester.

Page 237

Macros Nested Too Deep: Eight levels of macro nesting is available in Blitz2. Should never
happen!

Macro Not Found: The macro has not been defined previous to the !macroname{} call.

Array Errors

Illegal Array Type: Should never happen.

Array Not Found: A variable name followed by parenthises has not been previously defined
as an array. Other possible mistakes may be the use of brackets instead of curly brackets
for macro and procedure calls, Blitz2 thinking instead you are referring to an array name.

Array Is Not A List: A List function has been used on an array that was not dimensioned as a
List Array.

Illegal Number Of Dimensions: List arrays are limited to single dimensions.

Array Already Dim'd: An array may not be re-dimensioned.

Can't Create Variable Inside Dim: An undefined variable has been used for a dimension
parameter with the Dim statement.

Array Not Yet Dim'd: See Array not found.

Array Not Dim'd: See Array not found.

Interrupt Based Errors

End SetInt Without SetInt: Setlnt...End SetInt is a block directive and both commands must
be present.

SetInt Without End SetInt: SetInt...End SetInt is a block directive and both commands
must be present.

Page 238

Can't Use SeVClrInt In Local Mode: Error handling can only be defined by the primary code.

SetErr Not Allowed In Procedures: Error handling can only be defined by the primary code.

Can't use SeVClrlat in Local Mode: Error handling can only be defined by the primary code.

End Setlnt without SetInt: SetInt...End SetInt is a block directive and both commands must
be present.

Setlut without End SetInt: Setlnt...End SetInt is a block directive and both commands must
be present.

Illegally nested Interrupts: Interrupt handlers can obviously not be nested.

Can't nest SetErr: Interrupt handlers can obviously not be nested.

End SetErr without SetErr: SetErr...End SetErr is a block directive and both must be present.

Illegal Interrupt Number: Amiga interrupts are limited from 0 to 13. These interrupts are
listed in the Amiga Hardware reference appendix.

Label Errors Label reference out of context : Should never happen

Label has been used as a Constant: Labels and constants cannot share same name.

Illegal Label Name: Refer to the Programming in Blitz2 chapter for correct variable
nomenclature.

Duplicate Label: A label has been defined twice in the same source code. May also occur
with macros where a label is not preceded by a \@.

Label not Found: The label has not been defined anywhere in the source code.

Page 239

Can't Access Label: The label has not been defined in the source code.

Direct Mode Errors

Cont Option Disabled: The Enable Continue option in the Runtime errors of the Options
menu has been disabled.

Cont only Available in Direct Mode: Cont can not be called from your code only from the
direct mode window.

Library not Available in Direct Mode: Library is only available from within the code.

Illegal direct mode command: Direct mode is unable to execute command entered.

Direct Mode Buffer Overflow: The Options menu contains sizes of all buffers, if make
smallest code is in effect extra buffer memory will not be available for direct mode.

Can't Create in Direct Mode: Variables cannot be created using direct mode, only ones
defined by your code are available.

Select... End Select Errors

Select without End Select: Select is a block directive and an End Select must conclude the
block.

End Select without Select: Select...End Select is a block directive and both must be
present.

Default without Select: The Default command is only relevant to the Select...End Select
block directive.

Previous Case Block too Large: A Case section in a Select block is larger than 32K. Case
Without Select: The Case command is only relevant to the Select...End Select block
directive.

Page 240

Blitz Mode Errors

Only Available in Blitz mode: The command is only available in Blitz mode, refer to the
reference section for Blitz/Amiga valid commands.

Only Available in Amiga mode: The command is only available in Amiga mode, refer to the
reference section for Blitz/Amiga valid commands.

Strange Beast Errors

Optimiser Error! - $': This should never happen. Please report.

Expression too Complex: Should never happen. Contact Mark directly.

Not Supported: Should never happen.

Illegal Token: Should never happen.

Page 241

APPENDIX 2: OPERATING SYSTEM CALLS

BLITZLIBS:AMIGALIBS currently supports the EXEC, DOS, GRAPHICS, INTUITION and
DISKFONT Amiga libraries.

Each call may be treated as either a command or a function. Functions will always return a
long either containing true or false (signifying if the command was successful or failed) or a
value relevant to the routine.

When using library calls an underscore character (_) should follow the name. For example:

If (dosbase.l=OpenLibrary_(“reqtools.library”,0))
 ; program execution continues here
 CloseLibrary_(dosbase)
Else
 NPrint “ERROR: Unable to open reqtools.library”
EndIf

An asterisk (*) preceding routine names specifies that the calls are private and should not
be called from Blitz 2.

EXEC
Supervisor(userFunction)(a5)
module creation
InitCode(startClass,version)(d0/d1)
InitStruct(initTable,memory,size)(a1/a2,d0)
MakeLibrary(funcInit,structInit,libInit,dataSize,segList)(a0/a1/a2,d0/d1)
MakeFunctions(target,functionArray,funcDispBase)(a0/a1/a2)
FindResident(name)(a1)
InitResident(resident,segList)(a1,d1)
diagnostics
Alert(alertNum)(d7)
Debug(flags)(d0)
interrupts
Disable()()
Enable()()
Forbid()()
Permit()()
SetSR(newSR,mask)(d0/d1)
SuperState()()
UserState(sysStack)(d0)
SetIntVector(intNumber,interrupt)(d0/a1)
AddIntServer(intNumber,interrupt)(d0/a1)
RemIntServer(intNumber,interrupt)(d0/a1)
Cause(interrupt)(a1)

Page 242

memory allocation
Allocate(freeList,byteSize)(a0,d0)
Deallocate(freeList,memoryBlock,byteSize)(a0/a1,d0)
AllocMem(byteSize,requirements)(d0/d1)
AllocAbs(byteSize,location)(d0/a1)
FreeMem(memoryBlock,byteSize)(a1,d0)
AvailMem(requirements)(d1)
AllocEntry(entry)(a0)
FreeEntry(entry)(a0)
lists
Insert(list,node,pred)(a0/a1/a2)
AddHead(list,node)(a0/a1)
AddTail(list,node)(a0/a1)
Remove(node)(a1)
RemHead(list)(a0)
RemTail(list)(a0)
Enqueue(list,node)(a0/a1)
FindName(list,name)(a0/a1)
tasks
AddTask(task,initPC,finalPC)(a1/a2/a3)
RemTask(task)(a1)
FindTask(name)(a1)
SetTaskPri(task,priority)(a1,d0)
SetSignal(newSignals,signalSet)(d0/d1)
SetExcept(newSignals,signalSet)(d0/d1)
Wait(signalSet)(d0)
Signal(task,signalSet)(a1,d0)
AllocSignal(signalNum)(d0)
FreeSignal(signalNum)(d0)
AllocTrap(trapNum)(d0)
FreeTrap(trapNum)(d0)
messages
AddPort(port)(a1)
RemPort(port)(a1)
PutMsg(port,message)(a0/a1)
GetMsg(port)(a0)
ReplyMsg(message)(a1)
WaitPort(port)(a0)
FindPort(name)(a1)
libraries
AddLibrary(library)(a1)
RemLibrary(library)(a1)
OldOpenLibrary(libName)(a1)
CloseLibrary(library)(a1)
SetFunction(library,funcOffset,newFunction)(a1,a0,d0)
SumLibrary(library)(a1)

Page 243

devices
AddDevice(device)(a1)
RemDevice(device)(a1)
OpenDevice(devName,unit,ioRequest,flags)(a0,d0/a1,d1)
CloseDevice(ioRequest)(a1)
DoIO(ioRequest)(a1)
SendIO(ioRequest)(a1)
CheckIO(ioRequest)(a1)
WaitIO(ioRequest)(a1)
AbortIO(ioRequest)(a1)
resources
AddResource(resource)(a1)
RemResource(resource)(a1)
OpenResource(resName)(a1)
misc
RawDoFmt(formatString,dataStream,putChProc,putChData)(a0/a1/a2/a3)
GetCC()()
TypeOfMem(address)(a1)
Procure(semaport,bidMsg)(a0/a1)
Vacate(semaport)(a0)
OpenLibrary(libName,version)(a1,d0)
functions in v33 or higher (distributed as Release 1.2)
signal semaphores (note funny registers)
InitSemaphore(sigSem)(a0)
ObtainSemaphore(sigSem)(a0)
ReleaseSemaphore(sigSem)(a0)
AttemptSemaphore(sigSem)(a0)
ObtainSemaphoreList(sigSem)(a0)
ReleaseSemaphoreList(sigSem)(a0)
FindSemaphore(sigSem)(a1)
AddSemaphore(sigSem)(a1)
RemSemaphore(sigSem)(a1)
kickmem support
SumKickData()()
more memory support
AddMemList(size,attributes,pri,base,name)(d0/d1/d2/a0/a1)
CopyMem(source,dest,size)(a0/a1,d0)
CopyMemQuick(source,dest,size)(a0/a1,d0)
cache
functions in v36 or higher (distributed as Release 2.0)
CacheClearU()()
CacheClearE(address,length,caches)(a0,d0/d1)
CacheControl(cacheBits,cacheMask)(d0/d1)
misc
CreateIORequest(port,size)(a0,d0)
DeleteIORequest(iorequest)(a0)
CreateMsgPort()()
DeleteMsgPort(port)(a0)
ObtainSemaphoreShared(sigSem)(a0)

Page 244

even more memory support
AllocVec(byteSize,requirements)(d0/d1)
FreeVec(memoryBlock)(a1)
CreatePrivatePool(requirements,puddleSize,puddleThresh)(d0/d1/d2)
DeletePrivatePool(poolHeader)(a0)
AllocPooled(memSize,poolHeader)(d0/a0)
FreePooled(memory,poolHeader)(a1,a0)
misc
AttemptSemaphoreShared(sigSem)(a0)
ColdReboot()()
StackSwap(newStack)(a0)
task trees
ChildFree(tid)(d0)
ChildOrphan(tid)(d0)
ChildStatus(tid)(d0)
ChildWait(tid)(d0)
future expansion
CachePreDMA(address,length,flags)(a0/a1,d1)
CachePostDMA(address,length,flags)(a0/a1,d1)

DOS
Open(name,accessMode)(d1/d2)
Close(file)(d1)
Read(file,buffer,length)(d1/d2/d3)
Write(file,buffer,length)(d1/d2/d3)
Input()()
Output()()
Seek(file,position,offset)(d1/d2/d3)
DeleteFile(name)(d1)
Rename(oldName,newName)(d1/d2)
Lock(name,type)(d1/d2)
UnLock(lock)(d1)
DupLock(lock)(d1)
Examine(lock,fileInfoBlock)(d1/d2)
ExNext(lock,fileInfoBlock)(d1/d2)
Info(lock,parameterBlock)(d1/d2)
CreateDir(name)(d1)
CurrentDir(lock)(d1)
IoErr()()
CreateProc(name,pri,segList,stackSize)(d1/d2/d3/d4)
Exit(returnCode)(d1)
LoadSeg(name)(d1)
UnLoadSeg(seglist)(d1)
DeviceProc(name)(d1)
SetComment(name,comment)(d1/d2)
SetProtection(name,protect)(d1/d2)
DateStamp(date)(d1)
Delay(timeout)(d1)
WaitForChar(file,timeout)(d1/d2)
ParentDir(lock)(d1)
IsInteractive(file)(d1)

Page 245

Execute(string,file,file2)(d1/d2/d3)
functions in v36 or higher (distributed as Release 2.0)
DOS object creation/deletion
AllocDosObject(type,tags)(d1/d2)
FreeDosObject(type,ptr)(d1/d2)
packet level routines
DoPkt(port,action,arg1,arg2,arg3,arg4,arg5)(d1/d2/d3/d4/d5/d6/d7)
SendPkt(dp,port,replyport)(d1/d2/d3)
WaitPkt()()
ReplyPkt(dp,res1,res2)(d1/d2/d3)
AbortPkt(port,pkt)(d1/d2)
Record Locking
LockRecord(fh,offset,length,mode,timeout)(d1/d2/d3/d4/d5)
LockRecords(recArray,timeout)(d1/d2)
UnLockRecord(fh,offset,length)(d1/d2/d3)
UnLockRecords(recArray)(d1)
Buffered File I/O
SelectInput(fh)(d1)
SelectOutput(fh)(d1)
FGetC(fh)(d1)
FPutC(fh,ch)(d1/d2)
UnGetC(fh,character)(d1/d2)
FRead(fh,block,blocklen,number)(d1/d2/d3/d4)
FWrite(fh,block,blocklen,number)(d1/d2/d3/d4)
FGets(fh,buf,buflen)(d1/d2/d3)
FPuts(fh,str)(d1/d2)
VFWritef(fh,format,argarray)(d1/d2/d3)
VFPrintf(fh,format,argarray)(d1/d2/d3)
Flush(fh)(d1)
SetVBuf(fh,buff,type,size)(d1/d2/d3/d4)
DOS Object Management
DupLockFromFH(fh)(d1)
OpenFromLock(lock)(d1)
ParentOfFH(fh)(d1)
ExamineFH(fh,fib)(d1/d2)
SetFileDate(name,date)(d1/d2)
NameFromLock(lock,buffer,len)(d1/d2/d3)
NameFromFH(fh,buffer,len)(d1/d2/d3)
SplitName(name,seperator,buf,oldpos,size)(d1/d2/d3/d4/d5)
SameLock(lock1,lock2)(d1/d2)
SetMode(fh,mode)(d1/d2)
ExAll(lock,buffer,size,data,control)(d1/d2/d3/d4/d5)
ReadLink(port,lock,path,buffer,size)(d1/d2/d3/d4/d5)
MakeLink(name,dest,soft)(d1/d2/d3)
ChangeMode(type,fh,newmode)(d1/d2/d3)
SetFileSize(fh,pos,mode)(d1/d2/d3)
Error Handling
SetIoErr(result)(d1)
Fault(code,header,buffer,len)(d1/d2/d3/d4)
PrintFault(code,header)(d1/d2)
ErrorReport(code,type,arg1,device)(d1/d2/d3/d4)

Page 246

Process Management
Cli()()
CreateNewProc(tags)(d1)
RunCommand(seg,stack,paramptr,paramlen)(d1/d2/d3/d4)
GetConsoleTask()()
SetConsoleTask(task)(d1)
GetFileSysTask()()
SetFileSysTask(task)(d1)
GetArgStr()()
SetArgStr(string)(d1)
FindCliProc(num)(d1)
MaxCli()()
SetCurrentDirName(name)(d1)
GetCurrentDirName(buf,len)(d1/d2)
SetProgramName(name)(d1)
GetProgramName(buf,len)(d1/d2)
SetPrompt(name)(d1)
GetPrompt(buf,len)(d1/d2)
SetProgramDir(lock)(d1)
GetProgramDir()()
Device List Management
SystemTagList(command,tags)(d1/d2)
AssignLock(name,lock)(d1/d2)
AssignLate(name,path)(d1/d2)
AssignPath(name,path)(d1/d2)
AssignAdd(name,lock)(d1/d2)
RemAssignList(name,lock)(d1/d2)
GetDeviceProc(name,dp)(d1/d2)
FreeDeviceProc(dp)(d1)
LockDosList(flags)(d1)
UnLockDosList(flags)(d1)
AttemptLockDosList(flags)(d1)
RemDosEntry(dlist)(d1)
AddDosEntry(dlist)(d1)
FindDosEntry(dlist,name,flags)(d1/d2/d3)
NextDosEntry(dlist,flags)(d1/d2)
MakeDosEntry(name,type)(d1/d2)
FreeDosEntry(dlist)(d1)
IsFileSystem(name)(d1)
Handler Interface
Format(filesystem,volumename,dostype)(d1/d2/d3)
Relabel(drive,newname)(d1/d2)
Inhibit(name,onoff)(d1/d2)
AddBuffers(name,number)(d1/d2)
Date, Time Routines
CompareDates(date1,date2)(d1/d2)
DateToStr(datetime)(d1)
StrToDate(datetime)(d1)

Page 247

Image Management
InternalLoadSeg(fh,table,funcarray,stack)(d0/a0/a1/a2)
InternalUnLoadSeg(seglist,freefunc)(d1/a1)
NewLoadSeg(file,tags)(d1/d2)
AddSegment(name,seg,system)(d1/d2/d3)
FindSegment(name,seg,system)(d1/d2/d3)
RemSegment(seg)(d1)
Command Support
CheckSignal(mask)(d1)
ReadArgs(template,array,args)(d1/d2/d3)
FindArg(keyword,template)(d1/d2)
ReadItem(name,maxchars,cSource)(d1/d2/d3)
StrToLong(string,value)(d1/d2)
MatchFirst(pat,anchor)(d1/d2)
MatchNext(anchor)(d1)
MatchEnd(anchor)(d1)
ParsePattern(pat,buf,buflen)(d1/d2/d3)
MatchPattern(pat,str)(d1/d2)
FreeArgs(args)(d1)
FilePart(path)(d1)
PathPart(path)(d1)
AddPart(dirname,filename,size)(d1/d2/d3)
Notification
StartNotify(notify)(d1)
EndNotify(notify)(d1)
Environment Variable functions
SetVar(name,buffer,size,flags)(d1/d2/d3/d4)
GetVar(name,buffer,size,flags)(d1/d2/d3/d4)
DeleteVar(name,flags)(d1/d2)
FindVar(name,type)(d1/d2)
CliInitNewcli(dp)(a0)
CliInitRun(dp)(a0)
WriteChars(buf,buflen)(d1/d2)
PutStr(str)(d1)
VPrintf(format,argarray)(d1/d2)
these were unimplemented until dos 36.147
ParsePatternNoCase(pat,buf,buflen)(d1/d2/d3)
MatchPatternNoCase(pat,str)(d1/d2)
this was added for v37 dos, returned 0 before then.
SameDevice(lock1,lock2)(d1/d2)

GRAPHICS
BitMap primitives
BltBitMap(srcBitMap,xSrc,ySrc,destBitMap,xDest,yDest,xSize,ySize,minterm,mask,tempA)(a0,d0/d1/a1,d2/
d3/d4/d5/d6/d7/a2)
BltTemplate(source,xSrc,srcMod,destRP,xDest,yDest,xSize,ySize)(a0,d0/d1/a1,d2/d3/d4/d5)
Text routines
ClearEOL(rp)(a1)
ClearScreen(rp)(a1)
TextLength(rp,string,count)(a1,a0,d0)
Text(rp,string,count)(a1,a0,d0)

Page 248

SetFont(rp,textFont)(a1,a0)
OpenFont(textAttr)(a0)
CloseFont(textFont)(a1)
AskSoftStyle(rp)(a1)
SetSoftStyle(rp,style,enable)(a1,d0/d1)
Gels routines
AddBob(bob,rp)(a0/a1)
AddVSprite(vSprite,rp)(a0/a1)
DoCollision(rp)(a1)
DrawGList(rp,vp)(a1,a0)
InitGels(head,tail,gelsInfo)(a0/a1/a2)
InitMasks(vSprite)(a0)
RemIBob(bob,rp,vp)(a0/a1/a2)
RemVSprite(vSprite)(a0)
SetCollision(num,routine,gelsInfo)(d0/a0/a1)
SortGList(rp)(a1)
AddAnimOb(anOb,anKey,rp)(a0/a1/a2)
Animate(anKey,rp)(a0/a1)
GetGBuffers(anOb,rp,flag)(a0/a1,d0)
InitGMasks(anOb)(a0)
General graphics routines
DrawEllipse(rp,xCenter,yCenter,a,b)(a1,d0/d1/d2/d3)
AreaEllipse(rp,xCenter,yCenter,a,b)(a1,d0/d1/d2/d3)
LoadRGB4(vp,colors,count)(a0/a1,d0)
InitRastPort(rp)(a1)
InitVPort(vp)(a0)
MrgCop(view)(a1)
MakeVPort(view,vp)(a0/a1)
LoadView(view)(a1)
WaitBlit()()
SetRast(rp,pen)(a1,d0)
Move(rp,x,y)(a1,d0/d1)
Draw(rp,x,y)(a1,d0/d1)
AreaMove(rp,x,y)(a1,d0/d1)
AreaDraw(rp,x,y)(a1,d0/d1)
AreaEnd(rp)(a1)
WaitTOF()()
QBlit(blit)(a1)
InitArea(areaInfo,vectorBuffer,maxVectors)(a0/a1,d0)
SetRGB4(vp,index,red,green,blue)(a0,d0/d1/d2/d3)
QBSBlit(blit)(a1)
BltClear(memBlock,byteCount,flags)(a1,d0/d1)
RectFill(rp,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3)
BltPattern(rp,mask,xMin,yMin,xMax,yMax,maskBPR)(a1,a0,d0/d1/d2/d3/d4)
ReadPixel(rp,x,y)(a1,d0/d1)
WritePixel(rp,x,y)(a1,d0/d1)
Flood(rp,mode,x,y)(a1,d2,d0/d1)
PolyDraw(rp,count,polyTable)(a1,d0/a0)
SetAPen(rp,pen)(a1,d0)
SetBPen(rp,pen)(a1,d0)
SetDrMd(rp,drawMode)(a1,d0)

Page 249

InitView(view)(a1)
CBump(copList)(a1)
CMove(copList,destination,data)(a1,d0/d1)
CWait(copList,v,h)(a1,d0/d1)
VBeamPos()()
InitBitMap(bitMap,depth,width,height)(a0,d0/d1/d2)
ScrollRaster(rp,dx,dy,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3/d4/d5)
WaitBOVP(vp)(a0)
GetSprite(sprite,num)(a0,d0)
FreeSprite(num)(d0)
ChangeSprite(vp,sprite,newData)(a0/a1/a2)
MoveSprite(vp,sprite,x,y)(a0/a1,d0/d1)
LockLayerRom(layer)(a5)
UnlockLayerRom(layer)(a5)
SyncSBitMap(layer)(a0)
CopySBitMap(layer)(a0)
OwnBlitter()()
DisownBlitter()()
InitTmpRas(tmpRas,buffer,size)(a0/a1,d0)
AskFont(rp,textAttr)(a1,a0)
AddFont(textFont)(a1)
RemFont(textFont)(a1)
AllocRaster(width,height)(d0/d1)
FreeRaster(p,width,height)(a0,d0/d1)
AndRectRegion(region,rectangle)(a0/a1)
OrRectRegion(region,rectangle)(a0/a1)
NewRegion()()
ClearRectRegion(region,rectangle)(a0/a1)
ClearRegion(region)(a0)
DisposeRegion(region)(a0)
FreeVPortCopLists(vp)(a0)
FreeCopList(copList)(a0)
ClipBlit(srcRP,xSrc,ySrc,destRP,xDest,yDest,xSize,ySize,minterm)(a0,d0/d1/a1,d2/d3/d4/d5/d6)
XorRectRegion(region,rectangle)(a0/a1)
FreeCprList(cprList)(a0)
GetColorMap(entries)(d0)
FreeColorMap(colorMap)(a0)
GetRGB4(colorMap,entry)(a0,d0)
ScrollVPort(vp)(a0)
UCopperListInit(uCopList,n)(a0,d0)
FreeGBuffers(anOb,rp,flag)(a0/a1,d0)
BltBitMapRastPort(srcBitMap,xSrc,ySrc,destRP,xDest,yDest,xSize,ySize,minterm)(a0,d0/d1/a1,d2/d3/d4/d5/
d6)
OrRegionRegion(srcRegion,destRegion)(a0/a1)
XorRegionRegion(srcRegion,destRegion)(a0/a1)
AndRegionRegion(srcRegion,destRegion)(a0/a1)
SetRGB4CM(colorMap,index,red,green,blue)(a0,d0/d1/d2/d3)
BltMaskBitMapRastPort(srcBitMap,xSrc,ySrc,destRP,xDest,yDest,xSize,ySize,minterm,bltMask)(a0,d0/d1/
a1,d2/d3/d4/d5/d6/a2)
AttemptLockLayerRom(layer)(a5)

Page 250

functions in v36 or higher (distributed as Release 2.0)
GfxNew(gfxNodeType)(d0)
GfxFree(gfxNodePtr)(a0)
GfxAssociate(associateNode,gfxNodePtr)(a0/a1)
BitMapScale(bitScaleArgs)(a0)
ScalerDiv(factor,numerator,denominator)(d0/d1/d2)
TextExtent(rp,string,count,textExtent)(a1,a0,d0/a2)
TextFit(rp,string,strLen,textExtent,constrainingExtent,strDirection,constrainingBitWidth,constrainingBitHeight
)(a1,a0,d0/a2/a3,d1/d2/d3)
GfxLookUp(associateNode)(a0)
VideoControl(colorMap,tagarray)(a0/a1)
OpenMonitor(monitorName,displayID)(a1,d0)
CloseMonitor(monitorSpec)(a0)
FindDisplayInfo(displayID)(d0)
NextDisplayInfo(displayID)(d0)
GetDisplayInfoData(handle,buf,size,tagID,displayID)(a0/a1,d0/d1/d2)
FontExtent(font,fontExtent)(a0/a1)
ReadPixelLine8(rp,xstart,ystart,width,array,tempRP)(a0,d0/d1/d2/a2,a1)
WritePixelLine8(rp,xstart,ystart,width,array,tempRP)(a0,d0/d1/d2/a2,a1)
ReadPixelArray8(rp,xstart,ystart,xstop,ystop,array,temprp)(a0,d0/d1/d2/d3/a2,a1)
WritePixelArray8(rp,xstart,ystart,xstop,ystop,array,temprp)(a0,d0/d1/d2/d3/a2,a1)
GetVPModeID(vp)(a0)
ModeNotAvailable(modeID)(d0)
WeighTAMatch(reqTextAttr,targetTextAttr,targetTags)(a0/a1/a2)
EraseRect(rp,xMin,yMin,xMax,yMax)(a1,d0/d1/d2/d3)
ExtendFont(font,fontTags)(a0/a1)
StripFont(font)(a0)

INTUITION
Public functions OpenIntuition() and Intuition() are intentionally not documented.
OpenIntuition()()
Intuition(iEvent)(a0)
AddGadget(window,gadget,position)(a0/a1,d0)
ClearDMRequest(window)(a0)
ClearMenuStrip(window)(a0)
ClearPointer(window)(a0)
CloseScreen(screen)(a0)
CloseWindow(window)(a0)
CloseWorkBench()()
CurrentTime(seconds,micros)(a0/a1)
DisplayAlert(alertNumber,string,height)(d0/a0,d1)
DisplayBeep(screen)(a0)
DoubleClick(sSeconds,sMicros,cSeconds,cMicros)(d0/d1/d2/d3)
DrawBorder(rp,border,leftOffset,topOffset)(a0/a1,d0/d1)
DrawImage(rp,image,leftOffset,topOffset)(a0/a1,d0/d1)
EndRequest(requester,window)(a0/a1)
GetDefPrefs(preferences,size)(a0,d0)
GetPrefs(preferences,size)(a0,d0)
InitRequester(requester)(a0)
ItemAddress(menuStrip,menuNumber)(a0,d0)
ModifyIDCMP(window,flags)(a0,d0)

Page 251

ModifyProp(gadget,window,requester,flags,horizPot,vertPot,horizBody,vertBody)(a0/a1/a2,d0/d1/d2/d3/d4)
MoveScreen(screen,dx,dy)(a0,d0/d1)
MoveWindow(window,dx,dy)(a0,d0/d1)
OffGadget(gadget,window,requester)(a0/a1/a2)
OffMenu(window,menuNumber)(a0,d0)
OnGadget(gadget,window,requester)(a0/a1/a2)
OnMenu(window,menuNumber)(a0,d0)
OpenScreen(newScreen)(a0)
OpenWindow(newWindow)(a0)
OpenWorkBench()()
PrintIText(rp,iText,left,top)(a0/a1,d0/d1)
RefreshGadgets(gadgets,window,requester)(a0/a1/a2)
RemoveGadget(window,gadget)(a0/a1)
The official calling sequence for ReportMouse is given below. Note the register order. For the complete story,
read the ReportMouse autodoc.
ReportMouse(flag,window)(d0/a0)
Request(requester,window)(a0/a1)
ScreenToBack(screen)(a0)
ScreenToFront(screen)(a0)
SetDMRequest(window,requester)(a0/a1)
SetMenuStrip(window,menu)(a0/a1)
SetPointer(window,pointer,height,width,xOffset,yOffset)(a0/a1,d0/d1/d2/d3)
SetWindowTitles(window,windowTitle,screenTitle)(a0/a1/a2)
ShowTitle(screen,showIt)(a0,d0)
SizeWindow(window,dx,dy)(a0,d0/d1)
ViewAddress()()
ViewPortAddress(window)(a0)
WindowToBack(window)(a0)
WindowToFront(window)(a0)
WindowLimits(window,widthMin,heightMin,widthMax,heightMax)(a0,d0/d1/d2/d3)
start of next generation of names
SetPrefs(preferences,size,inform)(a0,d0/d1)
start of next next generation of names
IntuiTextLength(iText)(a0)
WBenchToBack()()
WBenchToFront()()
start of next next next generation of names
AutoRequest(window,body,posText,negText,pFlag,nFlag,width,height)(a0/a1/a2/a3,d0/d1/d2/d3)
BeginRefresh(window)(a0)
BuildSysRequest(window,body,posText,negText,flags,width,height)(a0/a1/a2/a3,d0/d1/d2)
EndRefresh(window,complete)(a0,d0)
FreeSysRequest(window)(a0)
MakeScreen(screen)(a0)
RemakeDisplay()()
RethinkDisplay()()
start of next next next next generation of names
AllocRemember(rememberKey,size,flags)(a0,d0/d1)
Public function AlohaWorkbench() is intentionally not documented
AlohaWorkbench(wbport)(a0)
FreeRemember(rememberKey,reallyForget)(a0,d0)

Page 252

start of 15 Nov 85 names
LockIBase(dontknow)(d0)
UnlockIBase(ibLock)(a0)
functions in v33 or higher (distributed as Release 1.2)
GetScreenData(buffer,size,type,screen)(a0,d0/d1/a1)
RefreshGList(gadgets,window,requester,numGad)(a0/a1/a2,d0)
AddGList(window,gadget,position,numGad,requester)(a0/a1,d0/d1/a2)
RemoveGList(remPtr,gadget,numGad)(a0/a1,d0)
ActivateWindow(window)(a0)
RefreshWindowFrame(window)(a0)
ActivateGadget(gadgets,window,requester)(a0/a1/a2)
NewModifyProp(gadget,window,requester,flags,horizPot,vertPot,horizBody,vertBody,numGad)(a0/a1/a2,d0/
d1/d2/d3/d4/d5)
functions in V36 or higher (distributed as Release 2.0)
QueryOverscan(displayID,rect,oScanType)(a0/a1,d0)
MoveWindowInFrontOf(window,behindWindow)(a0/a1)
ChangeWindowBox(window,left,top,width,height)(a0,d0/d1/d2/d3)
SetEditHook(hook)(a0)
SetMouseQueue(window,queueLength)(a0,d0)
ZipWindow(window)(a0)
public screens
LockPubScreen(name)(a0)
UnlockPubScreen(name,screen)(a0/a1)
LockPubScreenList()()
UnlockPubScreenList()()
NextPubScreen(screen,namebuf)(a0/a1)
SetDefaultPubScreen(name)(a0)
SetPubScreenModes(modes)(d0)
PubScreenStatus(screen,statusFlags)(a0,d0)
ObtainGIRPort(gInfo)(a0)
ReleaseGIRPort(rp)(a0)
GadgetMouse(gadget,gInfo,mousePoint)(a0/a1/a2)
GetDefaultPubScreen(nameBuffer)(a0)
EasyRequestArgs(window,easyStruct,idcmpPtr,args)(a0/a1/a2/a3)
BuildEasyRequestArgs(window,easyStruct,idcmp,args)(a0/a1,d0/a3)
SysReqHandler(window,idcmpPtr,waitInput)(a0/a1,d0)
OpenWindowTagList(newWindow,tagList)(a0/a1)
OpenScreenTagList(newScreen,tagList)(a0/a1)
new image functions
DrawImageState(rp,image,leftOffset,topOffset,state,drawInfo)(a0/a1,d0/d1/d2/a2)
PointInImage(point,image)(d0/a0)
EraseImage(rp,image,leftOffset,topOffset)(a0/a1,d0/d1)
NewObjectA(classPtr,classID,tagList)(a0/a1/a2)
DisposeObject(object)(a0)
SetAttrsA(object,tagList)(a0/a1)
GetAttr(attrID,object,storagePtr)(d0/a0/a1)
special set attribute call for gadgets
SetGadgetAttrsA(gadget,window,requester,tagList)(a0/a1/a2/a3)

Page 253

for class implementors only
NextObject(objectPtrPtr)(a0)
MakeClass(classID,superClassID,superClassPtr,instanceSize,flags)(a0/a1/a2,d0/d1)
AddClass(classPtr)(a0)
GetScreenDrawInfo(screen)(a0)
FreeScreenDrawInfo(screen,drawInfo)(a0/a1)
ResetMenuStrip(window,menu)(a0/a1)
RemoveClass(classPtr)(a0)
FreeClass(classPtr)(a0)

DISKFONT
OpenDiskFont(textAttr)(a0)
AvailFonts(buffer,bufBytes,flags)(a0,d0/d1)
functions in v34 or higher (distributed as Release 1.3)
NewFontContents(fontsLock,fontName)(a0/a1)
DisposeFontContents(fontContentsHeader)(a1)
functions in v36 or higher (distributed as Release 2.0)
NewScaledDiskFont(sourceFont,destTextAttr)(a0/a1)

Page 254

APPENDIX 3: RAWKEY CODES

Page 255

APPENDIX 4: COMMAND INDEX

--- A ---
Abs...................................115
AbsMouse.......................226
ACos................................117
Activate...........................194
ActivateString.................202
AddFirst...........................103
AddIDCMP......................189
AddItem..........................104
AddLast...........................103
Addr.................................127
AGABlue..........................175
AGAGreeb.......................175
AGAPalRGB.....................174
AGARed...........................174
AGARGB..........................174
ALibJsr............................129
AllocMem........................131
AMIGA.............................124
Asc...................................118
ASin.................................117
ASLFileRequest$............214
ASLFontRequest.............214
ASLPathRequest$..........214
ASLScreenRequest........215
AsmExit...........................129
ASyncFade......................176
ATan.................................117
AttachGTList...................211
AutoCookie.....................156

--- B ---
Bank................................130
BankSize.........................131
BBlit.................................163
BBlitMode.......................163
BeepScreen....................185
Bin$.................................118
BitMap.............................148
BitMapInput....................147
BitMapOrigin...................150

BitMapOutput.................146
BitMaptoWindow............197
BitMapWindow...............149
BitPlanesBitMap.............149
BLibJsr............................129
Blit...................................159
BlitColl.............................164
BlitMode..........................159
BlitzKeys.........................144
BlitzQualifier...................144
BlitzRepeat.....................144
BLITZ...............................124
Block...............................164
BlockScroll......................165
Blue.................................174
BorderPens.....................204
Borders...........................204
Box...................................151
Boxf.................................151
Buffer..............................162
ButtonGroup...................200
ButtonId..........................205

--- C ---
Call...................................130
Case...................................97
CaseSense..............119,121
CatchDosErrs..................113
CELSE..............................126
CEND...............................125
Centre$...........................120
CERR...............................126
Chr$.................................118
Circle...............................152
Circlef..............................152
ClearList..........................103
ClearRexxMsg.................217
ClearString......................202
ClickButton.....................226
ClipBlit.............................164
ClipBlitMode...................165

CloseEd...........................132
CloseFile.........................111
CloseScreen....................185
CloseSerial......................230
CloseWindow..................197
ClrErr...............................101
ClrInt...............................101
Cls....................................151
CludgeBitMap.................149
CNIF................................125
Colour..............................146
ColSplit............................137
CookieMode....................160
CopLen............................137
CopLoc............................137
CopyBitMap....................148
CopyShape......................156
Cos...................................116
CreateArgString..............219
CreateDisplay.................140
CreateMsgPort................216
CreateRexxMsg..............217
CSIF.................................126
Cursor..............................193
CursX...............................147
CursY...............................147
CustomColors.................142
CustomCop.....................137
CustomSprites................142
CustomString..................142
Cvi....................................119
Cvl....................................119
Cvq...................................119
Cycle................................175
CyclePalette....................173

--- D ---
Data.................................107
Date$...............................121
DateFormat.....................121
Days.................................122

Page 256

DCB..................................128
DecodeILBM...................150
DecodeMedModule........181
DecodePalette................173
DecodeShapes...............158
DecodeSound.................179
Default...............................97
DefaultIDCMP.................188
DefaultInput...................108
DefaultOutput.................108
DEFTYPE.........................102
DeleteArgString..............219
DeleteMsgPort................216
DeleteRexxMsg...............217
Dim..................................103
Disable............................205
DiskBuffer.......................179
DiskPlay..........................179
DispHeight......................115
Display.............................137
DisplayAdjust..................141
DisplayBitMap................140
DisplayControls..............140
DisplayDblScan..............142
DisplayPalette................140
DisplayRainbow..............143
DisplayRGB.....................143
DisplayScroll...................143
DisplaySprite..................140
DisplayUser.....................143
DoColl..............................170
DoFade............................176
DosBuffLen.....................113
DuplicatePalette.............176

--- E ---
Edit..................................108
Edit$................................107
Editat...............................193
EditExit............................193
EditFrom.........................193
Else....................................96
EMouseX.........................195

EMouseY.........................195
Enable.............................205
End.....................................96
End Macro.......................126
End Select.........................97
End SetErr.......................101
End SetInt.......................100
End Statement..................99
EndIf..................................96
Eof....................................113
EraseMode......................160
ErrFail..............................101
EVEN................................128
Event...............................190
EventCode.......................198
EventQualifier.................198
EventWindow..................190
Exchange........................102
ExecVersion....................123
Exists...............................114
Exp...................................117

--- F ---
FadeIn.............................175
FadeOut..........................175
FadePalette.....................173
FadeStatus......................176
False................................115
Fields...............................111
FileInput.........................112
FileOutput.......................112
FileRequest$..................108
FileSeek..........................112
FillRexxMsg.....................217
Filter................................179
FindScreen......................184
FirstItem.........................104
FloatMode.......................107
FloodFill..........................152
FlushBuffer.....................163
FlushEvents....................190
FlushQueue....................162
For......................................97

Forever..............................98
Format.............................106
Frac..................................116
Frames............................154
Free.................................127
Free BitMap....................148
Free BlitzFont.................146
Free Module....................180
Free Palette....................173
Free Window...................188
FreeBank.........................131
FreeFill............................152
FreeMacroKey.................228
FreeMem.........................131
FreeSlices.......................136
FromCLI..........................133
Function............................99
Function Return................99

--- G ---
GadgetBorder.................204
GadgetHit........................190
GadgetJam.....................201
GadgetPens....................201
GadgetStatus..................205
Gameb.............................110
Get...................................112
GetaShape......................156
GetaSprite.......................166
GetMedInstr...................181
GetMedNote...................181
GetMedVolume...............181
GetReg............................128
GetResultString..............224
GetRexxCommand.........224
GetRexxResult().............223
GetSuperBitMap.............197
Gosub................................95
Goto...................................95
Green...............................174
GTBevelBox....................212
GTButton.........................209
GTChangeList.................212

Page 257

GTCheckBox...................209
GTCycle...........................210
GTDisable........................213
GTEnable.........................213
GTGadPtr........................212
GTGetAttrs......................213
GTGetInteger..................212
GTGetString....................212
GTInteger........................210
GTListView......................210
GTMX...............................210
GTNumber......................210
GTPalette........................210
GTScroller.......................210
GTSetAttrs.......................212
GTSetInteger..................212
GTSetString.....................212
GTShape..........................211
GTSlider..........................210
GTStatus.........................213
GTString..........................210
GTTags............................211
GTText.............................211
GTToggle.........................213

--- H ---
Handle.............................157
HCos................................117
Hex$................................118
HideScreen.....................185
Hours...............................122
HPropBody......................203
HPropPot.........................203
HSin.................................117
HTan................................117

--- I ---
If...96
ILBMDepth......................114
ILBMGrab........................150
ILBMHeight.....................114
ILBMInfo.........................114
ILBMViewMode..............114
ILBMWidth......................114

INCBIN............................125
INCDIR............................125
INCLUDE.........................125
InFront............................167
InFrontB..........................167
InFrontF..........................167
InitAnim..........................154
InitBank..........................131
InitCopList......................139
InitPalette.......................173
InitShape........................158
InitSound........................178
Inkey$.............................108
InnerCls..........................192
InnerHeight...........................
InnerWidth......................196
Instr.................................118
Int....................................116
InvMode..........................160
IsRexxMsg......................225
ItemHit............................191
ItemStackSize................105

--- J ---
Joyb.................................109
Joyr..................................109
Joyx.................................109
Joyy.................................109
JumpMed........................180

--- K ---
KillFile.............................113
KillItem...........................104

--- L ---
LastItem..........................104
LCase$.............................120
Left$................................118
Len...................................120
Let....................................102
Line..................................151
LoadAnim........................154
LoadBank........................131
LoadBitMap.....................149
LoadBlitzFont..................146

LoadFont.........................198
LoadMedModule.............180
LoadModule....................180
LoadPalette.....................172
LoadScreen.....................184
LoadShape......................155
LoadShapes....................155
LoadSound......................177
LoadSprites.....................167
LoadTape........................228
Loc...................................113
Locate..............................147
Lof....................................112
Log...................................117
Log10..............................117
LoopSound......................178
LSet$...............................120

--- M ---
Macro..............................126
MacroKey........................228
MakeCookie....................156
Maximum........................127
MaxLen............................102
MButtons.........................191
MenuChecked.................208
MenuColour....................208
MenuGap.........................207
MenuHit..........................190
MenuItem.......................206
Menus..............................194
MenuState......................208
MenuTitle........................206
Mid$................................118
MidHandle......................157
Mins.................................122
Mki$.................................119
Mkl$.................................119
Mkq$...............................119
Months............................122
Mouse..............................144
MouseArea......................145
MouseButton..................226

Page 258

MouseWait........................98
MouseX...........................145
MouseXSpeed.................145
MouseY............................145
MouseYSpeed.................146
MoveScreen....................185

--- N ---
NewPaletteMode............172
NEWTYPE........................103
Next...................................97
NextFrame......................154
NextItem.........................104
NoCli................................133
NPrint..............................106
NTSC................................115
NumDays........................121
NumPars.........................132

--- O ---
On......................................95
OpenFile..........................111
OpenSerial......................229

--- P ---
PaletteRange..................176
PalRGB............................173
Par$.................................132
ParPath$.........................133
PColl................................170
Peek.........................115,130
Peeks$............................130
PeekSound......................179
PhoneticSpeak...............182
PlayBack.........................227
PlayMed..........................180
PlayModule.....................180
PlayWait..........................227
Plot..................................151
Point................................151
Pointer.............................145
Poke.................................130
Poly..................................153
Polyf.................................153
Pop.....................................98

PopInput.........................108
PopItem..........................105
PopOutput.......................109
PositionSuperBitMap.....197
PrevItem.........................104
Print.................................106
Processor........................123
PropGadget.....................202
PushItem........................104
Put...................................112
PutReg.............................128
PutSuperBitMap.............197

--- Q ---
QAbs................................116
QAMIGA..........................124
QAngle.............................118
QBlit.................................162
QBlitMode.......................162
QFrac...............................116
QLimit..............................116
Qualifier...........................191
Queue..............................161
QuickPlay........................227
QuietTrap........................228
QWrap.............................116

--- R ---
RastPort..........................196
RawKey...........................191
RawStatus.......................144
Read................................107
ReadFile..........................111
ReadMem........................113
ReadSerial.......................229
ReadSerialMem..............230
ReadSerialString............230
Record.............................227
RectsHit..........................171
Red..................................174
ReDraw............................204
RelMouse........................226
ReMap.............................152
Repeat...............................98

Replace$.........................119
ReplyRexxMsg................223
ResetList.........................103
ResetString.....................202
Restore............................107
Return................................95
RexxError()......................225
RexxEvent.......................224
RGB.................................173
Right$..............................118
Rnd..................................116
Rotate..............................158
RSet$...............................120
RunErrsOff......................126
RunErrsOn......................126

--- S ---
SaveBank........................131
SaveBitmap.....................149
SavePalette.....................173
SaveScreen.....................184
SaveShape......................155
SaveShapes....................155
SaveSprites.....................168
SaveTape.........................227
SBlit.................................163
SBlitMode........................163
Scale................................157
SColl................................170
Screen.............................183
ScreenPens.....................184
ScreensBitMap...............149
ScreenTags.....................185
Scroll...............................152
Secs.................................122
Select.................................96
SelectMode.....................201
SendRexxCommand......219
SerialEvent......................230
SetBPLCON0...................138
SetColl.............................169
SetCollHi.........................169
SetCollOdd......................169

Page 259

SetCycle..........................175
SetErr..............................101
SetGadgetStatus............201
SetHProp.........................203
SetInt..............................100
SetMedMask...................181
SetMedVolume...............181
SetMenu..........................207
SetPeriod........................179
SetSerialBuffer...............230
SetSerialLens..................230
SetSerialParams.............230
SetString.........................202
SetVoice..........................181
SetVProp.........................203
Sgn...................................116
ShapeGadget..................201
ShapeHeight...................157
ShapeItem......................207
ShapesBitMap................149
ShapesHit.......................170
ShapeSpriteHit...............170
ShapeSub........................207
ShapeWidth....................156
Shared...............................99
Show................................136
ShowB.............................136
ShowBitMap....................185
ShowBlitz........................137
ShowF.............................136
ShowPalette...................172
ShowScreen....................183
ShowSprite.....................167
ShowStencil....................164
Sin....................................117
SizeLimits........................196
SizeOf..............................103
Slice.................................134
SMouseX.........................184
SMouseY.........................184
SolidMode.......................160
Sort..................................105

SortDown........................105
SortList............................105
SortUp.............................105
Sound..............................177
SoundData......................179
Speak..............................181
SpriteMode.....................168
SpritesHit........................170
Sqr...................................117
StartMedModule.............180
Statement.........................98
Statement Return.............99
Stencil.............................163
Stop..
StopCycle...............................
StopMed..........................180
StopModule....................180
Str$..................................121
String$.............................118
StringGadget...................201
StringText$......................202
StripLead$......................120
StripTail$.........................120
SubHit.............................191
SubIDCMP.......................189
SubItem..........................207
SubItemOff.....................208
SysJsr..............................129
SystemDate....................121

--- T ---
Tan...................................117
TapeTrap.........................228
TextGadget.....................200
Toggle..............................205
TokeJsr............................129
Translate$.......................182
True.................................115
Type.................................226

--- U ---
UCase$............................120
UnBuffer.................................
UnLeft$............................120

UnQueue.........................162
UnRight$.........................120
Until...................................98
Use..................................126
Use BitMap.....................148
Use BlitzFont..................146
Use Palette.....................172
Use Slice.........................136
Use Window....................187
USED...............................127
USEPATH.........................124
UStr$...............................121

--- V ---
Val....................................121
ViewPort..........................184
VoiceLoc..........................182
Volume............................178
VPos................................115
VPropBody......................204
VPropPot.........................204
VWait.................................98

--- W ---
Wait.................................224
WaitEvent........................189
WBDepth.........................122
WBHeight........................122
WBlit................................197
WBox...............................192
WBStartup......................132
WbToScreen....................183
WBViewMode.................123
WBWidth.........................122
WCircle............................192
WCls................................192
WColour..........................194
WCursX............................195
WCursY............................195
WeekDay.........................122
WEllipse..........................192
Wend.................................96
While..................................96
Window...........................186

Page 260

WindowFont....................193
WindowHeight................196
WindowInput..................188
WindowOutput...............188
WindowTags....................198
WindowWidth.................196
WindowX.........................196
WindowY.........................196
WJam..............................194
WLeftOff..........................196
WLine..............................192
WLocate..........................195

WMouseX........................195
WMouseY........................195
WMove............................194
WPlot...............................191
WPointer.........................194
WPrintScroll....................197
WriteFile..........................111
WriteMem.......................113
WriteSerial......................229
WriteSerialMem..............230
WriteSerialString............229
WScroll............................193

WSize...............................195
WTitle..............................197
WTopOff..........................196

--- X ---
XFlip................................157
XINCLUDE.......................125
XStatus............................227

--- Y ---
Years................................122
YFlip................................157

Page 261

FINAL WORDS

Software used for editing: LibreOffice Writer

Software used to create the line vector art: Inkscape

Software used to create the screenshots: WinUAE via Wine, Screenshot

Page 262

	1. GETTING STARTED
	Directory Tree
	Using Ted the Blitz2 Editor
	Entering Text
	Highlighting Blocks of Text
	The Editor Menus
	The Blitz File Requester
	The Compiler Menu
	Compiler Options
	Keyboard Shortcuts

	2. BLITZ BASICS
	My First Program
	The Print Command
	Formatted Printing
	A Simple Variable
	Blitz2 Operators
	Boolean Operators
	Binary Operators
	Multiple Commands
	A Simple Loop
	Nested Loops
	While.Wend and Repeat.Until
	Endless Loops
	Using String Variables
	Program Flow
	Jumpin' Around
	Getting Input from the User
	Arrays

	3. TYPES, ARRAYS AND LISTS
	Numeric Types
	Default Types
	The Data Statement
	Numeric Overflows
	String Types
	System Constants
	Primitive Types Summary
	NewTypes
	Arrays Inside NewTypes
	The UsePath Directive
	ARRAYS
	LISTS
	Dimming Lists
	Adding Items to a list
	Processing Lists
	Removing Items From a List
	List Structure
	The Pointer Type

	4. PROCEDURES
	Introduction
	Statements
	Functions
	Recursion
	Accessing Global Variables
	Procedures Summary
	Assembler in Blitz Procedures

	5. ERROR CHECKING & DEBUGGING
	Compile Time Errors
	The CERR Directive
	Runtime Errors
	The Blitz Debugger
	The Debugger Gadgets
	Tracing Program Execution
	Resuming Normal Execution
	Viewing Command History
	Direct Mode
	Debugger Errors

	6. BLITZ OBJECTS
	Blitz2 Objects Overview
	Object Similarities
	Object Maximums
	Using an Object
	Input/Output Objects
	Object Structures
	The Blitz Primary Objects
	Screens
	Windows
	Gadget and Menu Lists
	Palettes
	BitMaps
	Shapes
	Sprites
	Slices
	Files
	Objects Summary

	7. BLITZ MODE
	Slice Magic
	Smooth Scrolling
	Dual-Playfield
	Copper Control
	The Blitter
	QAmiga Mode
	Summary

	8. ADVANCED TOPICS
	Resident Files
	Operating System Calls
	Calling OS Libraries
	Accessing OS Structures
	Locating Variables & Labels
	Constants
	Conditional Compiling
	Macros
	Macro Parameters
	The '0 Parameter
	Recursive Macros
	Replacing Functions with Macros
	The CMake Character
	Inline Assembler
	GetReg & PutReg
	Assembler in Procedures

	9. PROGRAMMING TECHNIQUE & OPTIMISING
	Label and Variable Names
	Style
	Naming Related Problems
	Remarks and Comments
	Structured Programming Techniques
	Keeping Things Modular
	Keeping Your Code Readable
	Optimising Code
	Algorithms
	Loops
	Look-Up Tables
	Using Pointers
	Testing Performance
	Optimising Games

	10. PROGRAM EXAMPLES
	Number Guessing
	Creating Stand-Alone Workbench Programs
	A Graphic Example
	Using Menus & File Requesters
	String Gadgets
	Prop Gadgets
	Database Type Aplication
	The Phone Book Program
	List Processor for Exec Based Lists
	Exec List Processor
	Prime Number Generator
	Clipped Blits
	Dual Playfield Slice
	Double Buffering
	Smooth Scrolling

	11. THE DISPLAY LIBRARY & AGA
	Introduction
	Initialising
	Flags used with InitCopList
	Colours
	Smooth Scrolling
	Dual Playfield
	Sprites
	Fetch Mode
	Multiple Displays
	Advanced Copper Control
	Display Example 1
	Display Example 2

	COMMAND REFERENCE SECTION
	R-1 Program Flow
	R-2 Variable Handling
	R-3 Input/Output
	R-4 File Handling & IFF Info
	R-5 Numeric & String Functions
	R-6 Compiler Directives & Object Handling
	R-7 Assembler Directives
	R-8 Memory Control
	R-9 Program Startup
	R-10 Slices
	R-11 Display Library
	R-12 Blitz Mode I/O
	R-13 Bitmaps
	R-14 2D Drawing
	R-15 Animation Support
	R-16 Shape Handling
	R-17 Blitting
	R-18 Sprite Handling
	R-19 Collision Detection
	R-20 Palettes
	R-21 Sound, Music & Speech
	R-22 Screens
	R-23 Windows
	R-24 Gadgets
	R-25 Menus
	R-26 GadTools
	R-27 ASL Library
	R-28 Arexx
	R-29 Brexx
	R-30 Serial Port

	APPENDIX
	A-1 COMPILE TIME ERRORS
	General Syntax Errors
	Procedure Related Errors
	Constant Related Errors
	Expression Evaluation Errors
	Illegal Errors
	Library Based Errors
	Include Errors
	Program Flow Based Errors
	Type Based Errors
	Condition Compiling Errors
	Resident Based Errors
	Macro Based Errors
	Array Errors
	Interrupt Based Errors
	Direct Mode
	Select.End Select Errors
	Blitz Mode
	Strange Beast Errors

	A-2 OPERATING SYSTEM CALLS
	Exec
	DOS
	Graphics
	Intuition
	DiskFont

	A-3 RAWKEY CODES
	A-4 COMMAND INDEX
	FINAL WORDS

