A Guide to Blitz
Basic

Meil Wright, Mickley 1906

version 1.1

An AmigaGuide conversion from F1 Licenceware disks
F1-136A and F1-136B.

jasonk00@hotmail.com
Typewritten text
An AmigaGuide conversion from F1 Licenceware disks
F1-136A and F1-136B.

jasonk00@hotmail.com
Typewritten text
version 1.1

Credits

| should like to take this opportunity of thanking those people who helped in the writing of this guide:
Jonathan Rutherford who gave valuable comments; Mark Sims and Noel Baldacchino for their programs
and suggestions; Kevin Winspear for editing the text into AmigaGuide format. Special thanks must go
to my parents, Tony and Barbara, for purchasing the equipment used to create this guide and for proof-
reading. Finally | am grateful to Acid Software, the purveyors of quality software on the Amiga.

Neil Wright, Mickley 1996

Preface

This guide is written for new and experienced users of Blitz Basic 2, the revolutionary BASIC language
for the Amiga. A GUIDE TO BLITZ BASIC is designed as a complete reference guide, rather than a step-
by-step programming tutorial; it will rapidly become one of your most valuable reference works. The
guide begins with the basics of programming and by the time you reach its end you will have been
introduced to the main features of the Blitz Basic language.

It contains an explanation of every single Blitz command, gives a useful example in each case, and tells
you about known bugs and how to work round them. The heart of the guide is a self-instructional Blitz
Basic course, taking the reader through basic programming concepts, math commands, graphics, music
and sound effects. Shapes, sprites and Intuition are all covered in detail.

You will find the guide most pleasurable if you work through the examples as you read it. Programming
is primarily a practical activity and you are encouraged at times to increase understanding of Blitz Basic
by creating your own programs.

If you are learning to program Blitz as a hobby you will find it absorbing and intellectually challenging.
Even the most inexperienced user will soon develop an appetite for Blitz. After all, programming is fun.

* Disk 2 of the guide contains all of the examples in Blitz Basic format, together with several useful
programs and game demos.

Contents

1. The Basics

P R R R R R R R R R RPB R R B B R B RB R B B B RB B B B B R

O 00 00 00 0 N N O U1 U1 & W W N R

Y
o s W W WNNMNRRPRPRS
N R [

Welcome t0 BLitz BaSIC vevvverrrerennnnnnneneeeeennnnnnannns 1
Using this guide ...ceiriiiriinieiiiieinnenennnacennannnns 1
Basic programming CONCEPLS ..vvereerreeerononeronnacsnnnanas 2
Functions, statements & commandsoeeeeeenernneenennnnn 2
AMIZA VS BlifZ wuveiinnniionneeeoneeroneacnoneacsonsanannnns 3
Label Definitions ..ueeiiieeeneeeneeesereennnenssssonssannns 5
RESTIICTIONS tvvvtvennnnensnesseeennnnesssssesssannnnsnsssns 6
Vard1ables .uivuiiereneneronesseonsesosssesosssosonsassnnses 6
NUMELIC TYPES eeeveeereneneeonnaeeneaeeoncacsonaaasnananas 9
Manipulating quick NUMDErSveiiriirenernneenennnnnnann 11
NEWT Y PES v titeteteterereeesessesnsasecnsososesasasassnnnns 12
NeWTYpe fieldS «uvieireneinneenerneeeneroeeenesocasanaanans 13
RESTIICTIONS wuveetineereeneerennaeeoneasennaasonnaasonnans 13
NewType 1N aCtion .uvieeeieeeenerneeeneroceeneeoceonaeanans 14
601 o 15
530 1 = 15
Blitz BasiC OPeratorS ...eeeeveeeeereneeeeoneenennaanonnnns 16
Relational Operatorseeeeieeeeeroeeeesoeeeronesansnnnns 17
Logical OperatorS ...veeeeeeeeeeeenneeenneacenaancnnaanenns 18
Using operators with Stringsceeeeieeeeeeneeeeennnenns 19
(000) 3 Tor= Yo=Y - X 19
Relational Operatorseeeeieeeeereeeeeeoneeroncacnonnnns 19
ATTAYS ttevevnenosesnsasscssnsosesosssessssssssssnsssnsnsns 20
LiST QITAYS tevtvnnereneneeoneeeeneaoeonsaesacsossncnonanes 21
SOTtING AITAYS ttvveeeereeeoeasoeeocasassocasnssscasnsannes 29
Program CONTIOL ...cuviereeneroseonesossocosossocssnssanons 32
USING data woveeernnreneenneeeeeneeeeasaseonasncasnanncanns 33
End-of-Chapter Summaryceeceeeeeececesossocosossacons 35

2. String Functions

N NN N N NDNDNDNDNDNDDNDNDNDDNDNDN
N O o0 o0 o &AW W W WN R

Strings and roundaboutseeieiiiiiiiiiiiiiiieeeernaaaann 37
Manipulating STIiNGS «eeeveeeerreeneeeeeeerencaenoncaneanns 38
String Searching ..vieeeieieiiieereeserenssesonsonsansononns 43
Searching for characters in a stringccceeeeeeennn.. 43
Replacing characters in a String ...c.oeeeeeeeeereeeeennnnnns L
Case SENSITIVILY tuvirrnnerinnerenneeeennenennaaacnnaanas L
Converting StringS ..vieeeeeeeeeerennseronsocsnssossnssanas 47
Obtaining string informationcceieieiiiernnnnnnnn. 50
CharaCter STIINGS «.eeveeeeeeneeeronnaeronsocsnesossnsnanas 52
INTEgOTS v viitetetererererssensosssnsssnsssosesosasassnsnns 53
LONG VAlUES tvvvtnirennronneessossoessassoessascanssnsannns 53
QUICK VAlUES tvvvietieieeereeeneneeneneenssesnnsesnnanennns 54

End-of-Chapter summaryeeceeeeeeeeeerossecosascannss 55

3. Mathematics

>
g
-
S,

w W W w w w ww
0 N O U W N R

R T S S I S R R S T R S B R
O 00 00 0 0 0 N O Ul & W N B

S~ WN R

Arithmetical OpPeratorsSeeeeeeeeerreeserooesoroncaonanns 57
Sign on the dotted 1ine ...ciiiiiiiierinneeennenennnnnennn 57
Floating point NUMDErScuiiiirererennnerennonencnonanns 60
Standard mathematical functionscceeeeevveeneneennns 62
TrigONOMELTY tivveetenneeronseeeneaesonsassoasosoncnonanes 64
Random NUMDEYS ...ttt ittt i iii e tetieeeaneennns 68
Maching COde ..uvveiiierininineeereeennnnessseseneoannnnnns 69
End-of-Chapter SUmmarycceceeeeeeeeeecoecccasaaaanans 73
Structures

Unconditional JUMPS ..veererennnerennneronsaconcsansnnnanas 75
Conditional jumps and structured testsceeeevunnnn.. 78
Conditional LOOPS «eveveererenenereneaeeonsacancaassncnanas 86
UNconditional TOOPS ceveeeeeeeneeeenneeeenneacnnaaacnnannas 88
Controlled LOOPS tvvieerrnreeenrnseeesrnscsossascsnssncanns 89
Interrupt handling ...evveeieieinerennneronseronnsasonnnes 920
Error handling «..eieeeneiinineiieneeeeeeerenenenencaananns 93
ProCEAUIES tvviiiitiit ittt tieeeeneraseeeasassoessansonnns 96
Statement-type Procedureseeeeeeeescecosascocssnsannns 96
Function-type proceduresceeeeeeeeeesensoesocsosenes 99
Global variableS ...veeeiieeeenneesseossroesnsensssoanssens 101
Some useful pProceduresceeeeeerecenreconsocanseannns 101
End-of-Chapter Summarycceeeeeeeeeceecocacancansnans 104

5. Input/Output

(2 TS T 5 T @ » I » B o B o B 5 (R & B & » B » B 5 B @ 5 R @ B @ 2 BN & 5 RN B @ B @ BN &) |

O U U U U U DR WNNR R R R R BR

g »~r W N -

N O o W

L= S 105
Printing ON SCrEEN ...uiiieeeeereneeeeneeeneneaaconcananns 105
Formatting numeric STringsveeiereneeerennoncncnonens 107
Changing the text Style .covieeiieriinerinneernneeeennnnnns 108
Setting the text CoOloUr ..ivuiiiiriiierenrierennononenonens 110
The texXt COLOUT vuuiitniiereineeennnerenesesonssssansonans 112
The Keyboardeeieierinieeernnreeernseosssnssonssnssans 114
Reading the keyboardc.ceeieiinenrnnenenneanennns 115
The JOYSTICK tiverrerinneerenneeenesoeonssasoesossncsonnns 120
Reading the mouse Statls ...eveeeeerenneeeennenenneanennns 123
The MOUSE POINTET ..iviuriiienreeeneneeensaesoesonsncnonnns 127
File QCCESS tvvurrrreeererornnnesssassessonnsanssssassnnns 128
File reQUESTEIS wuueitnreereeneeeneaeeoneaasoesansncnanans 128
0peNINg @ file tivviriirnnienernnreeeennsocesnnsocannnnnns 129
EXamining files ..viveiiiiennnereeeeneneeenencnanoncannnns 130
DEleting TileS wuivierrerereneeneeeeeonesoseonasncaanannans 133
Sequential fileS ..ovieeiierenneeeneneeeneneeannanoncaanans 133
Random access fileS ..iviveiierennneronnseronsenonnsanonnns 137
Advanced file aCCESS tvverrrrrrrerrreennnesssssssssesnnnns 139

End-of-Chapter Summaryc.ceeeeeveeceececonsncasscannss 140

6. BitMaps and Slices

S OO0 00O O O O O

> W N R

Creating @ BitMap ..vveererrenernneenernnconecnaaonannanns 142
Manipulating BitMaps «e.eeeeeeereeeeeeoeeerencaaconcaasnnns 143
Loading and saving BitMapseeeeieeeeeeennnnnnneenenens 149
Display synchronisationeeeeeeeeeeeeeneenennaenannns 150
Defining @ SLICE tivviiiieinereneneronsssoonsansnnsansnnns 152
SYNTAX 1 tiiiiiitiieeenenosososnsososososasessssssasnsnss 152
SYNTAX 2 tiiitintenenoeeseesonsossessessosssssscensassnsos 154
Manipulating SLiCeS wuvvereenerrenneneeneenennaancnnannnns 155
Displaying a BitMap in @ SliCe ..vvivvrierrnnnerennnanonnns 157
End-of-Chapter summaryc.ceeeeeeeeeceececasoncacannns 161

7. Graphics

8. Sprites

N N N N NN SN NN SN NN SN N NN N NN NN NN
N O OO0 U U UU e WWWNNNNRRRRRR R R R

0O 00O 0 0 O O O

0 N O B W N

N

2D DraWiNg «veeevennoesonnesonnsosonssosonsossnssosannsons 163
Clearing with COlOUT ..vuiirrinnerennnerenneeenneanennanns 163
GUNPOWAEr PLOT vivieiieeenieeeneeeenroeonsoeonsocanscannss 164
A TEW POINTEIS ©uvirtinnereneeeeeneeneonaanennaasonnannans 165
Tt's @ fine TINE tvvvuiniiinertiernnneneeereeeennnnnnnans 166
BOXING CleVeT wuiiiinieteneerenneeeenaeeennaancnnaasannns 167
CIrCle CITCUS tvvrrunnnneeeereeeonnenesssesssesananensssns 169
POLYSON POWEY 4 vviuseerossnenssesossocnssossssocnssosnsss 170
FAIll her Up! tiveiiiiiiiiiiiiieeeneneeeneaasansansncnanans 172
27 = o= 174
Loading a palette object ...covviiriiiiiiiiiiinenennnennns 174
Controlling palette ObJeCtS ..vivvrerrieneenernnnenennnnns 175
Manipulating palettes ...ieeeiereenerreenerennneeeneannnns 178
2= T 1= 181
Fading into and out of realityceeeeeerennenennnennns 181
Manual fading ..eeeieeinerennnereneessoesonsocsononcnonans 182
COLoUr CYCLANG tvvreerneeeenneeeeneaasonnaacnnaasannanns 183
(00T 0] e) =N 185
Copper load of this ..vviiiiiiiieriiii i inneenennnnns 186
Custom Copper LiStS tiveerereuneerennseronsocsnnsanonnnnns 187
Copper List functions ...eeeeeieerenneerenneeenneenennanns 189
TIFF ANImation cuveeeenennnenereeeennnnnseeeseeeennnennnsns 190
Animated antiCs vovviierennneneeererernnnessseosansannnens 190
A full example ..eeeiieiereereeerosseessossoessasssnssans 193
End-of-Chapter SUmmaryceeeeeeeeeceecccenonaanannns 194
and Shapes

Y 0 g =Y 195
Loading sprites from diskccevieeiiiineinnnnnnnnnnnn. 196
Saving sprites 10 disk ...ieeiiiiiiieriiiierenneeenennnnns 197
Sprite Commands «...eeeeeeeenneeenneeeennaaccnaaacnnannans 197
RS 1= 01 201
Loading and saving Shapeseeeeeeeineneennenennnannnn 202
Grabbing Shapes «..ciiiiieiiineeiieneeenenereenenonenonnns 204

Manipulating Shapes «..eeeeerieiereneeeeeenneeenonaaaannns 205

O 00O 00 0O O 0O O O O 0O 0O 00 00 00 00 0 0 0 0

ua &> > P PP PEEPRE0WwWWwWWwWW W NN DNNDN

N o g B~

g »r W N R

0 N O B~ W N

©
E
Q.
=3
o

O O O VW VW VW VW VW YV VOV VOV VOV OV VO

10. Screens

N O oo oo o W W W W N R

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

U & W N R R R R R R

o U WwW N R

Shape fUNCEtIONS tuvieiiinnrinernnreeernneocecnnsocannannns 207

Automatic shape flipping .veevereererrenereneneeeneannnns 208
Shape scaling and rotationeeeeeveeeeennenneenannns 210
COOKIECULS tvvvvvnnnnennsessseoennnessssossssssannnesssons 212
YR - 213
A simple blit couieriinniriinieiieneereeneneneaaconaananns 214
BLit MOOES tivvivriinnerennneroneseronssssonsasonnsassnnns 216
00 1= L= o] 5 219
BUffer Blits vuuiiieiieiiiinereneneroneeeronsanonnsanannns 221
SEeNCIl BLAtS wuviiiiieiiiernnnensneonrreennnessssoansnnns 223
Detecting COLLiSIONS tiiveererennneroneensnnsansnnnanannns 226
Colours and SPriteS c.veeeeeeeeeereneeeeennencnnaaaennanns 226
Executing collision detectioncvveeieienenenennnnnnns 230
Collision CheCKing ..eeeeieeeineerenneeeennenennaanennanns 231
Sprite COlliSioNS ivierieienreeeneneeenenesacsoconcnannns 231
Shape COLTiSIONS ueeeneerenneeeeneeeenneacenaancanannnns 232
Shape and sprite colliSionsceeveieeenereenenenennnnns 234
Sprite area COLLISIONS tuvieiernrreeernneececnnnocannnnnns 235
Rectangular area COLLiSIONS ..vvvverenneernnnenennaenannns 236
End-of-Chapter SUmMmaryeeeeeeseecnsreconsncnssonnnss 237
Pump up the VOLUME ...iviiiiieiereneeenrosseessansnnnnans 238
Rave the Waves ...t iiii ittt iiitiierennennnanss 240
SAMPLES ¢ tttveetesroeesostoccsossosssnssasssnssasssnssnns 241
Playing samples from mMemorYeeeeeeeeccecesocaseannns 241
Playing samples from diskccoviieiiiiiiinennnnnnnnn. 244
Manipulating SamPlesS .veeeeereeereneeeeeoneocasanaaaannns 244
Playing Tracker modulesieeeereeeeerennnenencaannns 246
Med MOdULES «uutviriiniiieiittieereneeeseasscnssansennnans 248
Playing Med moduleseveeeeereeneereeeenennaancncannnns 248
Manipulating Med modulesS ...eveieererreenereonnononcnonens 250
S 0 L=T= ol 4N 254
Walkie-TalKie +.ivveernuinnninereeeennnnnneeereeeennnnnnnsns 254
It's a foreign 1language «..oeeeeeeeereneeeeneenennaanannns 256
End-of-Chapter Summaryceeeeeeeeeronceeseancennnans 257
Defining @ SCIeEN ..uueieeeeereneeerenneeennaenonnaanannns 258
SYNTAX 1 tiiitinrenenoeeseesonsessescessesssssssascessnsos 258
SYNTAX 2 tieietererereenesosososnsososesosassssssssasnsnss 259
Interlaced SCreeNS .uuiieeeeererneeeenneresnnesennnesannns 261
EXtra Half-Brite ...vveveneninneerreeennnosssensnsoonnnens 261
Hold AnNd MOdify tiveuierinnnerennneroneeesnnaanonnnanannns 261
SCreen BitMaps +vvveeeeneerenneeenneeeennaaconaaacnnannans 262
Controlling SCIrEENS . ivvererennnerensaeronsacsnnsosonnanns 263
SCreen PriorTity wuveeeeeeeeeneeeeneeeeneeacennaacanannnas 263
Manipulating SCIEENS «.ueieeeerreeeerroeaeronenosoncasnnns 264
Screen fUNCLIONS .uiiiitieenneensseeneeoennnenssasansnnns 268

10.6
10.6.1
10.6.2
10.7

11. Windows

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.

O 00 N O U & W N - N B O 00 N O Ul & W N -

S~ W N R

O 0O N N N N oo o oo ol ol &P PSPPSR PREWOWLOWDNDNDNDNMNDNDNNMDNMNNNMNNMNNRPRE
N B

12. Menus

12.1
12.1.1

IFF SCIEENS tittiieteeeeeeeeeeeaeeenoceeascessscensacnnnns 270

Loading and SavinNg SCIEENS «..eeeeeeereneeecocaaaoncnonans 270
TEBM i iitiiiiiieeeesensensensescessnssnsensenssscassnssns 271
End-of-Chapter SUMmaryceeeeeeeeeecescocssanssnsnnns 275
Opening @ WindoWeeeeeeneeeenneeeenneacennaacanannnas 276
Super-BitMap Windowseveereeenenereneneroenaconenanans 277
Manipulating Windowsceeeeeereneeeereneeeennnacaanans 280
Moving between Windowseeeeierreenereneneeeneannnns 280
Closing @ WANAOW +vvvevernnreneeneeoneenaconasaaaonaananas 281
Activating @ Windoweveeeierenneereenerennnecencannnns 282
WINAOW Tit1eS wuviivnnerrnnneronnneronssssonsasonnsassnnns 283
Altering window MENUSveeerreeeeeeeneeeennnaeoncanaans 283
MOVING @ WINAOW «ovvvunneronnneroneensonsononesononcsonans 284
Window SCTOLLING vvvverenneernneereneeeeonaanonnaanonnns 284
WiIndow SIZING vvvvvvrnininnnereeeennnneseeereeeennnnnnnans 285
WiNdOW BitMApS ovveeeerenneerenneeeoneeeeonaanonnaanannns 286
Window fuNCTioNS «vvvuuiiiiierirtiiiineneeereeeennnnnnnans 287
Window dimensions «veeeeeieeerereennenesseoserosnnsenssans 287
Window RAStPOrT ..vvvuuniiiieriteennnenenereeeennnnnnnnns 290
Window EVENTS tivvirrnerineeereeeonneossseassossnnnesssans 291
IDCMP flagS eveevrnseonernseooasossosssossonssossonssnnss 291
Defining IDCMP flagS «.vveeeerenneeeenneeeoneancnnaanannnn 291
AdAING IDCMP FLAGS +vuvvnennrnernerneneeneenennennennennns 293
Subtracting IDCMP flagsS seveeveerrenerenonesonnonsnnsonens 294
Window event fuNCLioNS ..vvieiennnerenneernnnerennaanannns 295
Gadget eventS ..iiuiiiii it i i it it e et ie e 297
MenNU EVeNES .iuieitiiiiiiiiieneenreneneneensosencnsencnnes 297
Keyboard eventsoieiiiiiiiiiiiiiiiiiiieinnreneennnanss 299
Clearing the event qUEUEieveieerenneeenneeeennnnns 301
WINAOW TEXE tvvrvrtunnerennneronnseronsessonsasonssassnnns 301
Changing the text Style coviieiieriinnerinneeennnenennnnns 302
Setting the text ColoUr ..ivuiiiiriiierenrnereeneesnenonens 303
Changing the text mode ...cvveiierriineiinenennnenennnnns 304
The TeXt CUISOT wuuittiiiitiineeennneeenneeeonnenennnsnnns 305
WiNdow INPUL «uierenee it iieeeeeeneeeennaanennaanannnn 306
Reading the keyboardcceeiiiieiienrnnnenennnenonnns 307
The 1NPUL CUTSOT uiiinieeeeneeeeeneeeennaacanaaacannnnnns 308
The MOUSE POINTET ..iiiurierenneeeneneeeneaesocsononenonnns 310
Mouse fUNCEIONS «.vivuineiienereneerronsesonnsosoncsonans 310
MOUSE DULLONS tviittiintiiieitnneseonnssennssnonnssnnns 312
The MOUSE POINter ivuiierreeeenereneenneocesoasocasaannns 312
Window graphiCs ..vveiiiiineiinnnereneeeenneeroneaanonnns 313
End-of-Chapter Summaryceeeeeeeeecnsreconsncnsscannss 317
DEfiNing MENUS . .iieriettenereneneroneeeonnaanoncaanannns 318
TeXt MeNU TeMS uuuiiiiriereneensseoeeeoonnnenssasanssnns 319

12.1.2 Shape menu 1temS ...ieeereeeeeerneeeeerneeonesnsaonasnnans 321

12.2
12.3
12.4
12.5

13. Gadgets

13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.
13.

14. AGA

14.
14.
14.
14.
14.
14.
14.
14.
14.

O 00 00 00 00 00 00 00 00 0 0 0 0 0 N O Ul & W WN R, -

N O oW NNNNDN R

=

O 00 N O U &~ W N B

[
N RO

Crealting MENUS «ivurrerenneeeneaeroneacsonaaconcaasannanns 323
Manipulating MENUS «uvveierenreeereeeeeeensaocasncasnannns 324
A full example .v.eeerieieresroeeressocssosssessasssnssnns 327
End-of-Chapter SUmMmaryeeeeeeveecnsseconsncnsscannss 328
TeXt GAAGETS v vvverieeerenroeerosrosssnssosssnssasssnssans 330
Cycling text gadgets .ovvevreeeinneenereneonennaaonannanns 332
Shape GadgetS viverieeererieeeresrocornssocssnssasssnssnns 334
String gadgets civvieiiiiiiiiiiiiiiiiiiiteetteteeeaaaaans 335
Manipulating string gadgetsceveiveenerrennerenennnnns 337
GAdZEt SrOUPS +ivvverrnieeernneeennneeenneeesnsencnnnsenns 339
Proportional gadgets ...vveeeerreenerreeeerennnanennaannns 340
Gadget bordersiieieiiiiiiiiiiiettiiitetiintetttanaans 347
Disabling Gadgets +vueereeneerenneerennenenneanennaanannns 349
The GadTools Library ...eeeeeveeeiierenneeroenonsncnonens 350
Basics Of GAATOOLS vuvevrrveverreernnnnsssoosssoonnncnssons 350
NUMEriC GadGEtS vivvvieiinnnereenneroneeesnnsanonnnanannns 352
Text and string gadgetsoveeriineriineerennenennnnnnnn 355
Check box adgets ..vveviiriieniineenernneonsrnsconcnnssns 358
Cycle GaAdgetS vvvvrieeerenreeeroneonesossocasnsaanannanns 358
LiSt GadGEtS tivvierinnnernneeeneeeeeneaasocsononcnonnns 359
Highlight gadgets .vuverrinnernnenrenneeeeneenennaanannnn 361
Palette GadgetS ..ovveririererreeerossoessossonssassnnssnns 361
Proportional gadgets ...oeveeieiereneeeerneeenennnannnnnns 362
Shape GadgetS viveiieeererreeeresrocernssosssnssasssnssans 363
Gadget bOrderseiieeerieeenrecensocessecassscassonnnss 364
Manipulating gadgets «.veveeeerreeneereeeerennnaconaannnns 365
End-of-Chapter SUMmMaryeeeeeeveecnsseconsecanseannss 367
Advanced Graphics Architecturec.cieeeieienennnnn. 368
Creating @ CopLiSt vivvviurrenernneenernneocennaaonaananns 368
MULtiple COPLISES vivvrrrrennnerennereneaerencaaeoneaannnns 371
NON-AGA COPLISTS tivvrerrrnneeneroeeoneroseonasosaonannnns 371
Displaying a BitMap in a COpLISt ...vevevrennerennaenennns 373
27 = o= 374
A full example .v.eeerieeereeroeeressocasossocssassanssnns 377
AGA Sprite handling ...veieeeiereererreeserooesononcnonans 377
End-of-Chapter Summaryceeeeeeeeecescocasansscanans 380

15. System functions

15.1
15.2
15.3
15.4
15.5
15.6

Display heights ..vveieiieineininerenneneonsenonnsanonnns 381
Object handling «..eveiierineeinneeennneeennenennannnns 382
System date and time ...ieieiiiiiiierennnereenonsncnonnns 385
Workbench fuNCtionseevereiiierinneerneenennnanennnn 392
FOOO PrOCESSOT tiviiviernreeerosroeosossocssnssasssnsanns 394
BREXX 4 iitiitiiiiititietteteettstestettntentestescnssnsnns 395

15.6.1 Emulating user Inputeiieeeiieeeerneeenernnconennnans 395
15.6.2 Recording tape 0bjects ...ieiieiiiiiiiieiiiiiiteneeennannn 398
15.6.3 Playing tape ObJECtS tivvierirnrerennnerennsnsnnsonennsoss 399
15.6.4 BREXX fUNCTIONS tuvrriierereeennnenseoosnseonnnssssscnssans 401
15.6.5 Loading and saving tape obJectSoiveiiniiirrnnnenennnnns 403
15.6.6 Recording BREXX COMMANAS . .vvvveerenneerenneeennaanennanns 4oL
15.6.7 MACTO KEYS iviiuererenennrenonsneossosonsoasssossssnsannns 405
15.7 End-of-Chapter Summarycceeeeeeeeereecocssansscanans 407

16. Advanced programming

16.1 Compiler direCtives .uuvieieeeeeeneenereenonecanaonannanns 408
16.1.1 Include fileS wuveeriierereeennnesssoossseonnnssssocnssans 408
16.1.2 Conditional COMPIlING tvvvervurrerennseronnsesnnsononnoans 411
16.1.3 MACIOS tevviennenrenenenneneasencaseocascncsscnsancncansns 414
16.2 1110] = 416
16.3 End-of-Chapter Summaryceeeeeeeeecescocssansanasans 419

17. Program start up

17.1 Executable files .iiveiiiiiiinniiiiinrenerennnononcnonens 420
17.1.1 CLI ParameterS «..eveeereeeeessosssasocnsososesasasassansns 422
17.2 Runtime program STart UP «eeeveeeeereneeeronsenonnsanonnns 424
17.3 End-of-Chapter SUMmaryceeeeeeeeeecescocssascansnans 425

18. The Future

18.1 The Blitz USEr GIOUP «eeevveeeeneroneeneeocesaasocasnannns 426
18.2 Blitz User INternationaleeeeeeeeeeeeneenennaanannns 426
18.3 Blitz User Magazineveeeereeeeeronnssesonsansnnsansnnns 427
18.4 Blitz User Disk MAagazineceeeeeeeeeeeeneenennaanannns 427
18.5 Magazine COLUMNS . .ivuurereneneroneessoesossncsononcsonnns 427
18.6 Useful CONTaCTS tvvvierernrreneressocesossoccsnssacasnsnns 428

Appendix A: Blitz Basic Applications

A.l Shapesmaker . ..vveiiiiernnieeernnroeeensrossenssanscnnsas 429
A.1.1 Loading an IFF file ..uiieinirrinnnrennnneennenennnannnns 429
A.1.2 Shapes Or SPriteS? .u.iiieeeereoesoroncsosonssssonsonsnns 429
A.1.3 Detention CENTIE .uueeieeerererennnesseesseoeonsessssnsss 430
A.1.4 Masking taAPE «everrennereeneeeenneeeenaanecaaaneaaaannnns 430
A.1.5 Preaching to the convertedcceviiiiiiiinnnnnennnns 430
A.2 =T o I U 430
A.2.1 FIrST STEPS tuevirireenrneeeeeroeeeaasocesaseocasaaaacanans 430
A.2.2 Starting from scratChcceeiiieiinnrennnneneaannnen 431
A.2.3 I'mamap - edit me! ...veuiiiriiernnneeenneneennannnnn 432
A.3 Shape-Ed V2 uuiiiiiiiiitiieernntoeeenssossonssasscnnsas 432
A.4 BODEA V1.2 tuiieiiinnieneeeseonenossoccnnasacannssacannns 433

A.5 2 B b 07 1 < 433

Appendix B: Useful Programs

0 W 0 W 0 0 W 0 W @

O 00 N O U1l & WIN B

=
S

X-Plane Starfieldcooeiiiiieiinneeenneenennnncnnnannns 435
Z-Plane Starfieldieeiiiieineiinnerennnenonnannnnnas 436
MaNdelbrot «vvevereeneinrereerocerosrocasossocosassacosas 437
MIrrored TeXt «uveieeeeeeeeeeereeeenerocesnasocasnaaananns 438
SYSEED FESEE 000000000000000000600000000000000000000600000 439
DFL: TeST tivirenrererererereesosasasocnsososososasannnas 439
RS 0] =0 == 440
=10 441
SCrOllING TeXE teevreeeeneroeeeneroceonasacaonasnaaocanans 442
CNiPSEt? i iiiieiiiieeiieeeetneeerencacroncacsonaasannnas 443

Appendix C: Error Messages

C.
C.

1
2

You're bUSZing Me ..uvieieeeeeeeeeneroeenoasocasaaaaaanns INAA
BLitZ €rror MESSAZES . eveeeeereneneroneassoceassncaansnes L4

Appendix D: Glossary

D.1

Glossary Oof TermMSieiieieenireeeenenoeeonanaaaonanas 455

Chapter 1 : The Basics

A couple of years ago the computer press speculated on Commodore's expected domination of the
home computer market and the continuing success of the Amiga. Events in 1994 confirmed both,
though no-one could have anticipated the eccentric mishandling of the CD32 console and the
subsequent caution with which the machine was to be regarded by manufacturers and buyers alike.

At the back end of 1994 it was still uncertain whether the Amiga - and the CD32 especially - would sell
in quantities hoped for by Commodore, and which would justify large investment by software houses.
They didn't, and the mighty Commodore was destroyed.

However, it hasn't been all doom and gloom. The advent of high-level programming languages, such as
Blitz Basic 2, is just one sign amongst many that software development on the Amiga is far from dead.

1.1 Welcome to Blitz Basic

BASIC stands for Beginners All-Purpose Symbolic Instruction Code. It uses an easily grasped mixture of
English, numbers, strings, arithmetic signs and parameters which will enable you to start programming
without having to learn a daunting low-level language such as Assembly Language. BASIC is a high-
level language which was first devised for education purposes only, but during recent years it has
undergone many improvements and is now widely used throughout the Amiga world in the form of
Blitz Basic 2.

A few years ago Blitz Basic was a breakthrough, the first programming language that ran anywhere near
as fast as Assembly Language (with the obvious exception of the C language). It was developed to run
solely on the Amiga - an A500 at the time - and some of the peculiarities of that machine have been
enshrined in the language ever since.

There were a number of pretenders to Blitz Basic's crown, including AMOS, GFA Basic and HiSoft Basic,
but it built up a large following and went through several versions and revisions - like the Amiga, but
more slowly. Blitz Basic 2 is currently up to version 1.9, the version covered in this guide, although the
information contained herein is relevant in part to all versions of Blitz.

In its relatively short lifetime, Blitz Basic has established itself as the most powerful BASIC dialect on the
Amiga. It is certainly a highly satisfactory package for the budding Amiga programmer - this is
indicated by the abundance of Blitz-created software in the Public Domain.

Blitz Basic is immensely powerful but does not welcome the novice. That is not because the program is
badly implemented - far from it - but because the documentation that accompanies the software is
poor and over-complicated. Together with Blitz Basic, this guide will help you unlock the power of your
Amiga! Here goes...

1.2 Using this guide

The following chapters provide a thorough and comprehensive index of all the Blitz Basic tokens, as well
as a valuable amount of reference material for using Blitz Basic 2.

The commands are arranged in relevant chapters and each description follows an identical format, for
ease of reference. After the command name the operating modes are given and they are followed by a
brief explanation of the command and the command syntax. For example:

1.The Basics

PRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: Print EXPRESSION

This is followed by a fuller explanation and, where appropriate, an example of the command's use.
The following conventions are used in the syntax descriptions:

* Command parameters are in capitals
® Square brackets indicate optional parameters []
® Three dots indicate that more parameters of the same format may be added as necessary (...)

If you are already familiar with the Blitz Basic 2 instruction set, be sure to read through the chapters for
any information that you may not know. You may be pleasantly surprised!

1.3 Basic programming concepts

The Blitz Basic 2 instruction set consists of a number of reserved keywords which perform a specific
task. It includes the names of all Blitz Basic statements, functions, commands and operators. Examples
include PRINT, EDIT$, WAITEVENT and <>.

Reserved words can be entered in either uppercase or lowercase, and Blitz Basic will automatically
highlight and format the keyword. You should always separate Blitz reserved keywords from
parameters, data, or other elements of a command with spaces. This lowers the risk of Blitz Basic not
recognising a token name.

1.3.1 Functions, statements & commands
The Blitz Basic 2 instruction set comes in three different flavours: functions, statements and commands.
Functions are Blitz Basic tokens that require parameters in parentheses, and return a value:

; *** Functions example

; ¥** Filename - Functions.bb2

N=Abs(-10)

MouseWait
End

Statements are Blitz Basic tokens that only perform an action but do not return a value. Their arguments
do not require parentheses:

; ¥** Statements example
; ¥** Filename - Statements.bb2

NPrint "Blitz Basic 2"

1.The Basics

MouseWait
End

Commands are Blitz Basic tokens that can be used as either a function or a statement:

*¥** Commands example
*** Filename - Commands.bb2

ev.l=WaitEvent ; *** As a function
Waitevent ; ¥** As a statement
MouseWait

End

1.4 Amiga Vs Blitz

Blitz Basic runs under two modes, namely Amiga mode and Blitz mode, and some of its commands are
limited in the mode under which they can run. Although the Amiga's Operating System is very powerful,
it often gets in the way of games programmers and slows the machine down. Blitz mode chucks the
Operating System out of the window, so that Blitz Basic can talk directly to the Amiga's hardware. Blitz
mode programs run extremely fast, and smooth scrolling and dual playfield displays can be created.

However, all Blitz reserved keywords are restricted in that they can operate under Amiga mode, OR Blitz
mode, OR both (the operating modes for all reserved keywords are given in this guide).

The following commands (commonly known as directives) are used to temporarily alter the Blitz Basic
operating mode.

AMIGA

Mode(s): Amiga/Blitz
Directive: enter Amiga mode
Syntax: AMIGA

The AMIGA directive is used to enter Amiga mode and to return to the Intuition environment. This is
the default Blitz Basic operating mode:

5 *¥*¥* AMIGA example
; ¥** Filename - AMIGA.bb2

; ¥** Enter Blitz mode
BLITZ
; *** Create Blitz mode display
BitMap ©,320,256,3
BitMapOutput ©
Slice 0,44,3
Show ©
¥¥* Qutput some text

1.The Basics

NPrint "Blitz mode"
ViWait 100
; *** Enter Amiga mode
AMIGA
; *¥** Output some more text
DefaultOutput
NPrint "Amiga mode"

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

BLITZ

Mode(s): Amiga/Blitz
Directive: enter Blitz mode
Syntax: BLITZ

The BLITZ directive is used to enter Blitz mode. Any further commands which require the presence of
the Operating System (such as the File access, Window and Gadget commands) will become
temporarily unavailable. File access especially should not occur directly before you enter Blitz mode. To
ensure that this is the case, after file access insert the following line before executing the BLITZ
directive:

VWait 100

Blitz mode is not a permanent state. Once your program has finished executing, Blitz Basic returns to
Amiga mode. For example

; *¥** BLITZ example
; *** Filename - BLITZ.bb2

; ¥** Enter Blitz mode

BLITZ

; *** Create Blitz mode display
BitMap ©,320,256,3

Slice 0,44,3

Show ©

**¥* Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

1.The Basics

QAMIGA

Mode(s): Amiga/Blitz
Directive: enter Quick Amiga mode
Syntax: QAMIGA

The QAMIGA directive is used to enter Quick Amiga mode. Quick Amiga mode is similar to Amiga
mode, however the current display is unaffected (i.e. you are not returned to the Intuition environment).
This allows you to jump into Amiga mode without having to corrupt a Blitz mode display. Here's an
example:

; *¥** QAMIGA example
; *** Filename - QAMIGA.bb2

; ¥** Enter Blitz mode
BLITZ
; ¥** Create Blitz mode display
BitMap ©,320,256,3
BitMapOutput ©
Slice 0,44,3
Show ©
; *¥** Output some text
NPrint "Blitz mode™
ViWait 100
; *** Enter Quick Amiga mode
QAMIGA
; *¥** Output some more text
NPrint "QAmiga mode (same display)"
*** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End

1.5 Label Definitions

Alphanumeric labels can consist of letters, special characters, or numbers. However, they must begin
with an alphabetical character. This allows the use of mnemonic labels to make your program code
easier to understand.

For example, the following labels are valid:

Bob:
BOB:
A100:
_Print:

1.The Basics

However, the following label names are not allowed:

1: ; *¥** begins with a number, not a letter
101: ; ¥** begins with a number, not a letter
Print: ; *** Blitz Basic reserved keyword

Capital label names are treated differently to lowercase label names. For example, Bob: and BOB: are
recognised as two different labels by Blitz Basic.

1.5.1 Restrictions

Alphanumeric labels are distinguished from variables by a terminating colon (:) - a legal label cannot
have a space between the name and the colon. When you refer to a label in a GOSUB or GOTO or other
control structure, do not include the colon as part of the label name.

You cannot use any Blitz Basic reserved keyword as an alphanumeric label, as Blitz Basic will generate an
error.

1.6 Variables

Variables represent values that are used in a program. In Blitz Basic there are two types of variable:
numeric and string. A numeric variable can only be assigned a value that is a number:

*** Variables example 1 ** Filename - Variablel.bb2

*** Define numeric variable
A=1
; *¥** Qutput contents of variable
NPrint A

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

A string variable can only be assigned a character string value:

*** Variables example 2 ** Filename - Variable2.bb2

*** Define string variable
A$="Blitz Basic"
; *¥** Output contents of variable

NPrint A$

*¥** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

1.The Basics

You can assign a value to a variable, or it can be assigned as the result of calculations in the program -
this is known as an expression. Before a variable is assigned a value, its value is zero (numeric variables)
or null (string variables).

While a variable name cannot be a reserved keyword, a reserved keyword embedded in a variable name
is allowed:

*** Variables example 3
*** Filename - Variable3.bb2

*** Define numeric variable
APrint=10

*¥** Qutput contents of variable
NPrint APrint

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

LET

Mode(s): Amiga/Blitz
Statement: assign a value to a variable
Syntax: Let VARIABLE=EXPRESSION

LET is an optional statement which is used to assign a value to a variable. For example:

*¥** Let example

*** Fjlename - Letl.bb2

*¥** Define numeric variable

Let A=1

*¥** Qutput contents of variable
NPrint A

*** Define numeric variable
A=1

*** Qutput contents of variable
NPrint A

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

1.The Basics

Here are some more examples of LET:

; ¥** Two Let
; ¥** Filename - Let2.bb2

Let A=180 ; ¥** Load variable A with 180

Let A=B*1@ ; *** Load ten lots of variable B into A
Let B+1 ; *** Increase B by 1

Let B-1 ; *** Decrease B by 1

Let C*10 ;5 ¥** Multiply C by 10

; ¥** Wait for a mouse click

MouseWait

; ¥*¥* Return to Blitz Basic 2 editor

End

EXCHANGE

Mode(s): Amiga/Blitz
Statement: swap the contents of two variables
Syntax: Exchange A,B

This useful little statement swaps the contents of two variables of the same type (i.e. A is assigned the
value of B and B, the value of A). For example:

*** Exchange example
; *** Filename - Exchange.bb2

NUM=10
; ¥** Dimension an array
Dim RANDOM(NUM)
; ¥** Generate NUM (default is 10) numbers
For A=1 To NUM

RANDOM(A)=A
Next A
Repeat

Repeat

*** Generate some random numbers
B=Rnd (NUM)+1
Until B>0
*** Swap variables

Exchange RANDOM(B), RANDOM(NUM)

Let C+1
Until C=NUM

*** Qutput random numbers
For T=1 To NUM

NPrint RANDOM(T)
Next T

1.The Basics

**¥* Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

1.7 Numeric types

Blitz Basic currently supports six different types of variable: five numeric types with different ranges and
accuracies for numeric data, and one string type ($) for character strings (we'll take a look at the string
type later on).

Table 1.1 : Numeric types

Type Suffix Range Accuracy Bytes Example

Byte .b +/- 128 Integer 1 Neil.b=125

Word .w +/- 32768 Integer 2 Dan.w=30000
Long .1 +/- 2147483648 Integer 4 Jon.1l=%$dffo00
Quick .q +/- 32768.0000 1/65536 2 Richard.q=500/7
Float .f +/- 9e18 1/10e18 4 Craig.f=4e7

To assign a type to a variable simply add the relevant suffix from the above table to the variable name:

; *¥** Blitz Basic types
*** Filename - Types.bb2

; *** Define numeric variables
BYTE.b=126
WORD.w=32767
LONG. 1=3200000
QUICK.g=3.1415
FLOAT.f=3e8
; *** Output numeric variables
NPrint BYTE
NPrint WORD
NPrint LONG
NPrint QUICK
NPrint FLOAT
; ¥** Wait for a mouse click
MouseWait
*¥** Return to Blitz Basic 2 editor
End

If no suffix is used in the first reference of a variable then Blitz Basic will assign that variable with the
default type. The default type is quick, however the DEFTYPE statement can be used to change this.

1.The Basics

DEFTYPE

Mode(s): Amiga/Blitz
Statement: declare a list of variables as a particular type
Syntax: DEFTYPE.TYPE [VARIABLE[,VARIABLE2,...]

The DEFTYPE statement has two main uses. It can change the default type and it can also be used to
declare a list of variables as being of a particular type (the default type is not affected). In this case, the
optional VARIABLE parameters must be included. Here is an example:

; ¥** DEFTYPE example
*** Filename - DEFTYPE.bb2

A=Pi
¥¥* A is a quick
NPrint A
; ¥** Set default type to word
DEFTYPE.w
NPrint Pi
*** Declare variables A and B as quicks
DEFTYPE.q A,B

A=Pi
B=Sqr(Pi)
NPrint A
NPrint B
*** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
SIZEOF

Mode(s): Amiga/Blitz
Function: return amount of memory a variable takes up
Syntax: s=SizeOf.TYPE[,PATH]

This function returns the amount of memory, in bytes, that a variable type takes up. If the optional PATH
parameter is included then the offset from the start of the type, to the specified entry, is returned. For
example:

*** SjizeOf example
; ¥** Filename - SizeOf.bb2

;5 ¥** NewType definition
NEWTYPE . NAME

10

1.The Basics

A.l
B.w
C.q
End NEWTYPE
; *** Return size of NewType
NPrint SizeOf.NAME
; ¥** Wait for a mouse click

MouselWait
; ¥** Return to Blitz Basic 2 editor

End

1.7.1 Manipulating quick numbers

As has been explained, the quick type is a fixed point type, with an accuracy of four decimal places.
Quick numbers can be manipulated with the following functions.

QLIMIT

Mode(s): Amiga/Blitz
Function: limit the range of a quick number
Syntax: QLimit(QUICK,LOW,HIGH)

Use the QLIMIT function to limit the range of a quick number. If QUICK is greater than or equal to LOW,
and less or equal to HIGH, then the value of QUICK is returned. If QUICK is less than LOW then LOW is
returned. Conversely, if QUICK is greater than HIGH then HIGH is returned. For example:

; *¥*¥* QLimit example
; ¥** Filename - QLimit.bb2

NPrint QLimit(100,0,90) ; *** Returns 90
NPrint QLimit(90,95,100) ; *** Returns 95
; ¥** Wait for a mouse click

MouseWait
; ¥** Return to Blitz Basic 2 editor

End

QWRAP

Mode(s): Amiga/Blitz
Function: wrap the result of a quick expression
Syntax: QWrap(QUICK,LOW,HIGH)

QWRAP wraps the result of the quick expression if QUICK is greater than or equal to HIGH, or less than
LOW. If QUICK is less than LOW then QUICK-LOW+HIGH is returned. If QUICK is greater than or equal
to HIGH then QUICK-HIGH+LOW is returned. Here are some examples:

11

1.The Basics

; *** QWrap example
; *** Filename - QWrap.bb2

NPrint QWrap(-10,0,320) ; *** Returns 310
NPrint QWrap(100,0,90) ; *** Returns 10

; ¥** Wait for a mouse click

MouseWait

; *** Return to Blitz Basic 2 editor

End

1.8 NewTypes

In addition to the six primitive types available, programmers can also create their own custom types, or
NewTypes. A NewType is a collection of fields, similar to a database or C structure, which enables you to
group together relevant fields in one variable type.

NEWTYPE

Mode(s): Amiga/Blitz
Statement: begin a NewType definition
Syntax: NEWTYPE .NAME

END NEWTYPE

Mode(s): Amiga/Blitz
Statement: end a NewType definition
Syntax: End NEWTYPE

NEWTYPE must be followed by a list of fields, separated by colons and/or newlines:

NEWTYPE .NAME
X.w
Y.w
SPEED.w

End NEWTYPE

Once a NewType is defined, variables are assigned the new type by using a suffix of NAME:
A.NAME

Which would assign the contents of the "NAME" NewType to the "A" variable.

12

1.The Basics

1.8.1 NewType fields

When defining a NewType structure, field names without a suffix will be assigned the type of the
previous field:

NEWTYPE .NAME
X.1
Y
SPEED

End NEWTYPE

In the above example the X field is assigned the long type, so the Y and SPEED fields are assigned the
same type.

Individual fields within a NewType variable are accessed and assigned using the "\" character:

NEWTYPE .NAME
X.w
Y.w
SPEED.w
End NEWTYPE
A.NAME\X=10
NPrint A\X
MouseWait
End

Which would assign the value 10 to the X field.

To assign values to all of the fields at once, separate the values with commas:

NEWTYPE .NAME

X.w

Y.w

SPEED.w
End NEWTYPE
A.NAME\X=10, 20,30
NPrint A\X

Which would assign the values 10, 20 and 30 to the X, Y and SPEED fields respectively.

1.8.2 Restrictions

References to string fields do not require the $ or .s suffix to be present. The following example will
generate an error:

13

1.The Basics

NEWTYPE .NAME

NAME$

AGE.q
End NEWTYPE
A.NAME\NAME$="Neil Wright"
NPrint A\NAME$
MouseWait
End

This is the correct procedure:

NEWTYPE .NAME

NAME$

AGE.q
End NEWTYPE
A.NAME\NAME="Neil Wright"
NPrint A\NAME
MouseWait
End

1.8.3 NewType in action

Once you have gained an understanding of how NewTypes are created, the next step is to see how they
are used within a Blitz Basic program. Here is full example:

;5 *¥** NEWTYPE example
*** Filename - NEWTYPE.bb2

; ¥** Create NewType with three fields
NEWTYPE . NAME

A.l

B.w

C.q
End NEWTYPE

*** Assign three values to the three fields
A.NAME\A=10,20, 30

*** Qutput the contents of the fields
NPrint A\A
NPrint A\B
NPrint A\C
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

14

1.The Basics

1.9 Constants

A constant is a values which is defined by the programmer, but does not change during program
execution. Constants are faster than variables and do not consume any memory. However, the following
must be obeyed when using constants:

* Constants can only hold integer values
* Constants can be used in assembler
® Constants can be used in conditional compiling evaluation

A constant is defined by adding the hash symbol (#) before a variable name. For example, #X=100
means that the #X variable is a constant, and will always be equal to 100. This allows the Blitz
programmer to replace meaningless numbers with mnemonic constants:

*** Constants example
*** Filename - Constants.bb2

*** Define constants
#WIDTH=320
#HEIGHT=256
#DEPTH=3

*** Create Blitz mode display using constants
BLITZ
BitMap O,#WIDTH,#HEIGHT,#DEPTH
Slice 0,44 ,#DEPTH
Show ©
BitMapOutput ©
; ¥*¥* Output contants
NPrint "Width = ",#WIDTH
NPrint "Height = ",#HEIGHT
NPrint "Depth = ",#DEPTH
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

1.10 Strings

A string variable is one which contains text, rather than numbers. Strings are surrounded by quotation
marks and all string names must end with the dollar ($) character. They can comprise of characters,
numbers or spaces. The example below creates a new string (A$) and stuffs it with the contents of the
subsequent quote marks:

; *¥** Strings example
; *** Filename - Stringsl.bb2

; *¥** Define a numeric variable
A$="Blitz BASIC 2"

15

1.The Basics

; *¥** Output variable
Print A$

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

MAXLEN

Mode(s): Amiga/Blitz
Statement: define maximum length of string variable
Syntax: MaxLen "STRING"=EXPRESSION

The MAXLEN statement is used to define the maximum length of a string variable. EXPRESSION
specifies the maximum number of characters for the string. This is only necessary when using the Blitz
Basic commands which require this definition (FILEREQUEST$ and FIELDS). Try the following example:

*** MaxLen example
; *** Filename - MaxlLen.bb2

*** Open a hi-res screen
Screen 0,3+8

*** Set maximum length of variables
MaxLen PATH$=160
MaxLen FILENAME$=64

*** Create a file requester
F$=FileRequest$("File requester",PATH$,FILENAME$)

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

Blitz Basic's string functions are extremely powerful, which is why we have devoted the whole of
Chapter 2 to them.

1.11 Blitz Basic operators

Operators perform mathematical or logical operations on values. When several operators are used
within the same program statement, they are processed in a specific order. This order is dependent on
the operator list, or hierarchy. The operators found at the top of this list are processed first. If the
operators are of the same level, the leftmost one is executed first, the rightmost last:

16

1.The Basics

Table 1.2 : Blitz Basic operators

Operator Description Example
NOT Logical NOT NOT A
BITSET A with B bit set A BitSet B
BITCLR A with B bit cleared A BitClr B
BITCHG A with B bit changed A BitChg B
BITTST True if A bit of B set A BitTst B
A Exponentiation A™B
LSL A left B times (logical) A LSL B
ASL A left B times (arithmetical) A ASL B
LSR A right B times (logical) A LSR B
ASR A right B times (arithmetical) A ASR B
& Logical AND A&B
| Logical OR A|B
& Multiply A*B
/ Divide A/B
+ Add A+B
= Subtract A-B
= Equal A=1
<> Unequal A<>B

Less than A Greater than A>B
= Less than or equal to A<=B
>= Greater than or equal to A>=B
AND Logical AND A AND B
OR Logical OR A OR B

1.11.1 Relational operators

Relational operators are used to compare two values. The result of the comparison is either true (-1) or
false (0). This result can then be used to make a decision regarding program execution. The following
table lists the relational operators:

Table 1.3 : Relational operators

Operator Description Example
= Equal A=1
<> Unequal A<>B
Less than A Greater than A>B
= Less than or equal to A<=B
>= Greater than or equal to A>=B
The "=" operator compares two numerical or character string expressions. When both are equal the

logical true is returned, otherwise logical false will be returned:

17

1.The Basics

*** = operator
*¥** Filename - =.bb2

A=3

B=3

If A=B Then End
Repeat

Forever

The "<", ">", "<="and ">=" operators serve to compare numerical and string expressions:

* A>B is true when A is greater than B

* AKB is true when A is less than B

* A<=B is true then A is less than or equal to B

* A>=B is true when A is greater than or equal to B

The "<>" operator determines if two numerical or string expressions are unequal:

* A<>B is true when A is unequal to B

When arithmetic and relational operators are combined in one expression, the arithmetic operation is
always performed first.

1.11.2 Logical operators

Logical operators perform bit manipulation, Boolean operations, or tests on multiple relations. Like
relational operators, logical operators can be used to make decisions regarding program execution.

A logical operator returns the result from the combination of true-false operands. The result (in bits) is
either true (-1) or false (0).

The Blitz Basic logical operators are NOT (logical complement), AND (conjunction) and OR (disjunction).

For example:

*** |ogical operators
*** Filename - Logic.bb2

NPrint NOT 3 ; ¥** returns -4
NPrint NOT -4 ;5 ¥** returns 3
NPrint 50 AND 40 ; *** returns 32
NPrint 12 AND 11 ; *** peturns 8
NPrint 2 OR 1 ; ¥** returns 3

*** Wait for a mouse click
MouseWait

18

1.The Basics

; ¥** Return to Blitz Basic 2 editor
End

1.12 Using operators with strings

A string expression consists of string constants, string variables, and other string expressions combined
by operators. There are two types of string operation: concatenation and relation.

1.12.1 Concatenation

Combining two strings together is called concatenation. The plus (+) operator is used to perform
concatenation. Here is an example of the use of the operator:

; *** A piece of string
; *** Filename - Strings2.bb2

; *** Define string variables

A$="Blitz "
B$="Basic "
C$="is tops!"

; ¥** Concatenate strings

Print A$+B$+C$

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

In the above example the "+" operator is used join together two strings. Running the example produces
the following on the screen:

Blitz Basic is tops!

Note that the other arithmetic operators (i.e. -, /, *) should not be applied to strings.

1.12.2 Relational operators

Strings can also be compared using the same relational operators that are used with numeric variables
(ie. =, <, >, <>, <= and >=).

With strings, the relational operators compare the ASCIl codes of the characters which comprise the
string. The ASCIl code system assigns a different number to each keyboard character. If all the ASCII
codes are the same, the strings are equal. If the ASCII codes differ, the lower code number precedes the
higher.

All string constants used in comparison expressions must be enclosed in quotation marks.

19

1.The Basics

Here is an example:

*** Relational operators
; *** Filename - Relation.bb2

; *** Define string variables

A$="A"
B$="B"
C$="Blitz"
D$="Basic"

; ¥** Evaluate variables
If A$<B$ Then NPrint A$,"<",B$
If B$>A$ Then NPrint B$,">",A$
If C$>D$ Then NPrint C$,">",D$
If C$=C$ Then NPrint C$,"=",C$
; ¥** Wait for a mouse click
MouselWait
*¥** Return to Blitz Basic 2 editor
End

1.13 Arrays

An array is a list of variables of the same name that are distinguished by subscripts (values that identify
each variable or element in the array). Arrays can be made up from any type of variable. Creation of
such an array is accomplished by the DIM statement.

DIM

Mode(s): Amiga/Blitz

Statement: dimension an array

Syntax: Dim ARRAY_NAME (DIMENSION LIST)
Syntax 2: Dim List ARRAY_NAME(DIMENSION LIST)

The DIM statement is used to dimension (set up) an array of a given number of numeric or string
variables. In numeric arrays, DIM is followed by a single letter or word that names the array, and one or
more numeric values (dimensions) separated by commas. String arrays are created in the same way,
however a single letter or word followed by a ($) is used for the array name. Here is an example:

*** Dim example
; ¥** Filename - Dim.bb2

; *** Dimension array
Dim A(20)
*** Define array contents
For B=1 To 20
A(B)=Int(Rnd(100))
Next B

20

1.The Basics

*** Print array contents
For C=1 To 20
NPrint A(C)

Next C
*** Wait for mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

1.13.1 List arrays

The optional List parameter, if included, denotes a List array. List arrays differ from normal arrays in that
Blitz Basic keeps an internal count of how many elements are stored in the List and an internal pointer
to the current element within the List. List arrays are restricted in size to one dimension:

¥¥* Dim example 2
*** Filename - Dim2.bb2

*** Dimension List array
Dim List A(20)

*** Define array contents
For B=1 To 20

A(B)=Int(Rnd(100))
Next B
; *¥** OQutput List array contents
For C=1 To 20

NPrint A(C)
Next C

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

RESETLIST

Mode(s): Amiga/Blitz
Statement: reset List array to first item
Syntax: ResetList ARRAY()

RESETLIST is used to set the current List array element to the first item. This prepares the array for
processing with the NEXTITEM statement. For example:

*** ResetlList example
*** Filename - ResetlList.bb2

*** Dimension List array

21

1.The Basics

Dim List A(10)
; ¥** Process List array
While AddFirst(A())
A()=B
Let B+1
Wend
ResetList A()
¥¥* Qutput List array contents
While NextItem(A())
NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

CLEARLIST

Mode(s): Amiga/Blitz
Statement: clear a List array
Syntax: ClearList ARRAY()

The CLEARLIST statement clears a List array. List arrays are automatically cleared when they are
dimensioned. Here is an example:

; ¥** ClearList example
; *** Filename - ClearList.bb2

; ¥** Dimension List array
Dim List A(10)
; ¥** Process List array
While AddFirst(A())
A()=B
Let B+1
Wend
ClearList A()
ResetList A()
; ¥** Qutput List array contents
While NextItem(A())
NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

22

1.The Basics

ADDFIRST

Mode(s): Amiga/Blitz
Function: insert array item at the beginning of an array List
Syntax: a=AddFirst [ARRAY()]

This function enables you to insert an array item at the beginning of a List array. ADDFIRST returns (-1)
if there is enough room in the array to add an element, and (0) if no array element is available. Example:

; *** AddFirst example
; *** Filename - AddFirst.bb2

; *** Dimension List array
Dim List A(100)
; ¥** Process List array
While AddFirst(A())

A()=B

Let B+1
Wend
NPrint B," items added"
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

ADDLAST

Mode(s): Amiga/Blitz
Function: insert array item at the end of an array List
Syntax: a=AddLast [ARRAY()]

The ADDLAST function enables you to insert an array item at the end of a List array. It returns (-1) if
there is enough room in the array to add an element, and (0) if no array element is available. For
example:

; ¥** AddLast example
; *** Filename - AddLast.bb2

; *** Dimension List array
Dim List A(100)
; *** Process List array
While AddLast(A())

A()=B

Let B+1
Wend

23

1.The Basics

; ¥** Qutput List array contents
For C=1 To 100

NPrint A(C)
Next C
NPrint B," items added"

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

ADDITEM

Mode(s): Amiga/Blitz
Function: insert array item after current item in array List
Syntax: a=AddItem [ARRAY()]

ADDITEM enables you to insert an array item after a List array's current item. The function returns (-1)
and sets the array's "current item" pointer to the item added if there is enough room to add an
element, and (0) if no array element is available. For example:

; *¥** AddItem example
; *** Filename - AddItem.bb2

; ¥** Dimension List array
Dim List A(2)
; *** Process List array
If AddFirst(A()) Then A()=1
If AddItem(A()) Then A()=2
If AddItem(A()) Then A()=3
NPrint "List array is:-"
ResetList A()

*** Qutput List array contents
While NextItem(A())

NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

KILLITEM

Mode(s): Amiga/Blitz
Statement: remove current item from array List
Syntax: k=KillItem ARRAY()

24

1.The Basics

The KILLITEM statement is used to delete the current item from a List array. The "current item" pointer
is then set to the item before the deleted element. Here is an example:

*** KillItem example
;5 *** Filename -KillItem.bb2

*** Dimension List array
Dim List A(39)

*** Pprocess List array
While AddItem(A())

A()=B

Let B+1
Wend
ResetList A()
While NextItem(A())

If A()/2<>Int(A()/2)

KillItem A()

EndIf
Wend
ResetList A()

*** Qutput List array contents
While NextItem(A())

NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

PREVITEM

Mode(s): Amiga/Blitz
Function: set pointer to previous item
Syntax: p=PrevItem [ARRAY()]

This function sets the List array's "current item" pointer to the previous item, allowing for backward
processing of a List array. PREVITEM returns (-1) if a previous item is available, and (0) if one is
unavailable. Try the following example:

; ¥** PrevItem example
*** Filename - PrevItem.bb2

*** Dimension List array
Dim List A(25)
; *** Process List array
While AddLast(A())

A()=B

25

1.The Basics

Let B+1
Wend
If LastItem(A())
*** Qutput List array contents

Repeat
NPrint A()

Until NOT PrevItem(A())
EndIf
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

NEXTITEM

Mode(s): Amiga/Blitz
Function: set pointer to next item
Syntax: n=NextItem [ARRAY()]

The NEXTITEM function sets the List array's "current item" pointer to the next item, allowing for forward
processing of a List array. It returns (-1) if the next item is available, and (0) if one is unavailable.
Example:

; ¥** NextItem example
*** Filename - NextItem.bb2

*** Dimension List array
Dim List A(25)
; ¥** Process List array
While AddLast(A())
A()=B
Let B+1
Wend
ResetList A()
*** Qutput List array contents
While NextItem(A())
NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

26

1.The Basics

FIRSTITEM

Mode(s): Amiga/Blitz
Function: set pointer to first item
Syntax: f=FirstItem [ARRAY()]

FIRSTITEM sets the "current item" pointer in a List array to the first item in the array. The function
returns (-1) if there is a first item available, and (0) if there are no items in the List array. For example:

*** FirstItem example
; *** Filename - FirstItem.bb2

; *** Dimension List array
Dim List A(25)

*** Process List array
While AddFirst(A())

A()=B

Let B+1
Wend
If FirstItem(A())

NPrint "First item = ",A()
EndIf
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

LASTITEM

Mode(s): Amiga/Blitz
Function: set pointer to last item
Syntax: l=LastItem [ARRAY()]

LASTITEM sets the "current item" pointer in a List array to the last item in the array. The function returns
(-1) if there is a last item available, and (0) if there are no items in the List array. For example:

*¥** |astItem example
; *** Filename - LastItem.bb2

*** Dimension List array
Dim List A(25)

*** Process List array
While AddFirst(A())

A()=B

Let B+1

27

1.The Basics

Wend
If LastItem(A())
NPrint "Last item = ",A()
EndIf
; ¥** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

PUSHITEM

Mode(s): Amiga/Blitz
Statement: push pointer to internal stack
Syntax: PushItem ARRAY()

The PUSHITEM statement "pushes" a List array's "current item" pointer onto an internal stack. This
pointer can be recalled at a later date by POPITEM. The internal item pointer stack can be pushed 8
times.

POPITEM

Mode(s): Amiga/Blitz
Statement: get pointer from internal stack
Syntax: PopItem ARRAY()

POPITEM retrieves a pushed "current item" pointer from the internal stack. The ARRAY() parameter must
be the name of the most recently pushed List array. Here's an example:

; *** pushItem/PopItem example
; *** Filename - PopItem.bb2

; *** Dimension List array
Dim List A(10)
; ¥** Process List array
While AddLast(A())

A()=B

Let B+1
Wend
ResetList A()
While NextItem(A())

If A()=5 Then PushItem A()
Wend
PopItem A()
KillItem A()
ResetList A()
; *** Output List array contents
While NextItem(A())

28

1.The Basics

NPrint A()
Wend
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

ITEMSTACKSIZE

Mode(s): Amiga/Blitz
Statement: set push stack size
Syntax: ItemStackSize MAXIMUM

This statement defines the maximum number of List array items that may be pushed.

1.13.2 Sorting arrays

If you were creating a database-type application, or a program that required the contents of an array to
be in order, then it would be very time consuming to manually sort through the array. Blitz Basic
provides four statements which can be used to automatically order an array.

SORT

Mode(s): Amiga/Blitz
Statement: sort a specified array in ascending order (default)
Syntax: Sort ARRAY()

The SORT statement sorts the specified array in ascending order. The direction of the sort may be
changed using the SORTUP and SORTDOWN statements (default is ascending). Note that NewType
arrays and List arrays cannot be sorted with this statement. Here is a full example:

; *¥** Sort example
; ¥** Filename - Sort.bb2

; ¥** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10
A(B)=Int(Rnd(100))
NPrint A(B)
Next B
NPrint ""
; *** Sort the array in ascending order
Sort A()
; *** Qutput array
For C=1 To 10
NPrint A(C)

29

1.The Basics

Next C

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

SORTUP

Mode(s): Amiga/Blitz
Statement: force the SORT command to sort into ascending order
Syntax: SortUp

Example:

; *** SortUp example
*** Filename - SortUp.bb2

*** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10
A(B)=Int(Rnd(100))
Next B
; ¥** Sort array in ascending order
SortUp
Sort A()
; ¥*¥* Output new array
For C=1 To 10
NPrint A(C)

Next C

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

30

1.The Basics

SORTDOWN

Mode(s): Amiga/Blitz
Statement: force the SORT command to sort into descending order
Syntax: SortDown

Example:

; ¥** SortDown example
*** Filename - SortDown.bb2

*** Dimension an array
Dim A(10)
; *** Create an array of random numbers
For B=1 To 10

A(B)=Int(Rnd(100))
Next B
; ¥** Sort array in descending order
SortDown
Sort A()
; *¥** Qutput new array
For C=1 To 10

NPrint A(C)
Next C

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

SORTLIST

Mode(s): Amiga/Blitz
Statement: rearrange the elements in a linked list
Syntax: SortList ARRAY()

The SORTLIST statement is used to rearrange the order of elements in a Blitz Basic linked list. The order
in which the items are sorted depends on the first field of the linked list type, which must be a single
integer word:

¥¥* SortList example
; *** Filename - Sortlist.bb2

; *** Dimension a List array
Dim List A(10)

; *** Create a List array of random numbers

31

1.The Basics

While AddLast(A())
A()=Int(Rnd(100))
Let B+1
Wend
ResetList A()
*** Sort List array
SortList A(),©
*** Qutput new array
While NextItem(A())
NPrint A()
Wend
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

1.14 Program control
The following statements are used to control Blitz Basic program execution.

END

Mode(s): Amiga/Blitz
Statement: end the current program
Syntax: End

This statement serves to end the current program. Program execution may not be continued. For
example:

*** End example
; ¥** Filename - End.bb2

NPrint "Press left mouse button to return to editor”
; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

STOP

Mode(s): Amiga/Blitz
Statement: interrupt the current program
Syntax: Stop

32

1.The Basics

The STOP statement interrupts the current program. Program execution may be resumed using the
CONT statement:

; ¥** Stop example
; *** Filename - Stop.bb2

A=Int(Rnd(5))

NPrint "Press left mouse button to stop"
; ¥** Wait for a mouse click

MouseWait

; *** Stop program in its tracks
Stop

CONT

Mode(s): Amiga/Blitz
Statement: continue current program
Syntax: Cont [N]

This statement is only available in direct mode. CONT resumes program execution from the instruction
following the STOP statement. The optional N parameter can be used to ignore a specified number of
STOP statements after a CONT.

1.15 Using data

What is Data? Well, 99% of all programs ever written operate on and use data of one kind or another.
Information and data are really one and the same; we enter information into a computer and get out a
different type of information at the end of processing. So when the information is inside the computer,

we refer to it as data. Large amounts of this data can be stored in your Blitz programs with the DATA
statement.

DATA

Mode(s): Amiga/Blitz

Statement: define data items in a program
Syntax: Data LIST

Syntax 2: Data .TYPE LIST

READ

Mode(s): Amiga/Blitz
Statement: read data into a variable
Syntax: Read LIST

33

1.The Basics

RESTORE

Mode(s): Amiga/Blitz
Statement: set the current READ pointer
Syntax: Restore PROGRAM_LABEL

The DATA statement allows you to store constant values in your programs. A data pointer is associated
with the commands DATA and READ. This pointer always points to the next DATA item to be read with
the READ statement and is set initially to the first DATA item. The data pointer can be set at a specific
DATA line with the RESTORE statement. For this purpose, a label must be set in front of the DATA line
and the data pointer set with RESTORE PROGRAM_LABEL. If no label follows the RESTORE statement the
data pointer will be set to the very first DATA item in the program. Here is an example:

; *¥** Using Data ** Filename - Data.bb2

; *** Dimension a string array
Dim A$(5)
; *** Return location of program data
Restore MY_DATA
; *** Read data elements into string array
For A=1 To 5

Read A$(A)

NPrint A$(A)
Next A
; ¥** Wait for a mouse click
MouselWait
; *** Return to Blitz Basic 2 editor
End

; *** Program data

MY _DATA:

Data$ "Blitz","Basic","Is","Truly","Remarkable"

When data is being read into a variable, the .TYPE of the data being read

must match the type of the variable it is being read into:

Table 1.4 : Data types

Data Data Type Example

Byte Data.b Data.b=125

Word Data.w Data.w=30000

Long Data.l Data.l=$dffo00

Quick Data.q Data.q=500/7

Floating point Data.f Data.f 3.14,1.79
String Data$ Data$ "Blitz","BASIC"

34

1.The Basics

For example:

**¥* Using Data 2 ** Filename - Data2.bb2
*** Read program data into variables
Read A$,B,C.w
*** Qutput variable contents
NPrint A$
NPrint B
NPrint C
¥¥* Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

; *** Program data

Data$ "Blitz" ; *** String type data
Data 39 ; *** Quick type data

Data -10 ; *** Word type data

1.16 End-of-Chapter summary
There are three different types of Blitz Basic token: functions, statements and commands.
Functions are Blitz Basic tokens that require parameters in parentheses, and return a value.

Statements are Blitz Basic tokens that only perform an action but do not return a value. Their arguments
do not require parentheses.

Commands are Blitz Basic tokens that can be used as either a function or a statement, depending upon
whether the arguments were in parentheses or not.

Blitz Basic 2 runs under two modes: Amiga and Blitz. For system-friendly programs use Amiga mode
and, for extra speed, throw the operating system out of the window with Blitz mode.

Variables represent values that are used in a program. Blitz Basic supports six different types of variable:
five numeric types with different ranges and accuracies for numeric data, and one string type ($) for
character strings. Custom types can be created with the NEWTYPE statement.

Constants are values which are defined by the programmer, but do not change during program
execution.

A string variable is one which contains text, rather than numbers. Strings are surrounded by quotation
marks and all string names must end with the dollar ($) character.

Operators perform mathematical or logical operations on values.

An array is a list of variables of the same name that are distinguished by subscripts (values that identify
each variable or element in the array). List arrays are limited in size to one dimension.

Program execution is stopped with the END statement.

Large amounts of data can be stored in your programs with the DATA statement.

35

Chapter 2 : String Functions

As we have already found out, a string variable is one which contains text, rather than numbers. Strings
are surrounded by quotation marks and all string names must end with the dollar ($) character. They
can comprise of characters, numbers or even spaces.

In this chapter you will learn how to manipulate strings using the powerful Blitz Basic string functions.

2.1 Strings and roundabouts

Strings can be sliced, diced and chopped up into individual words and letters using LEFT$, RIGHT$ and
MID$. These are the most powerful string functions in Blitz Basic.

LEFT$

Mode(s): Amiga/Blitz
Function: return the leftmost characters of a string
Syntax: destination$=Left$(SOURCE$,NUMBER OF CHARACTERS)

LEFT$ takes the specified number of characters from a source string, beginning with the first character,
and pastes them into a destination string. For example:

;5 ¥** Left$ example
; *¥** Filename - Left$.bb2

NPrint "Enter a string:"

; ¥** Input text string (40 characters maximum)
A$=Edit$(40)

; ¥** Input number of characters

NPrint "How many characters from left?:"
A=Edit(10)

; *** Grab the specified characters
NPrint Left$(A$,A)

; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

RIGHT$

Mode(s): Amiga/Blitz
Function: return the rightmost characters of a string
Syntax: destination$=Right$(SOURCE$,NUMBER_OF CHARACTERS)

36

2.String Functions

The equivalent function for the right-hand side of text strings is the aptly named RIGHT$. RIGHT$ takes
the specified number of rightmost characters from a source string and pastes them into a destination
string. The following example can be used to generate numbers with preceding zero characters, such as
those found in shoot-em-up games and high-score tables:

*** Right$ example
; *** Filename - Right$.bb2

SCORE=1000

¥¥* Turn variable into a string
S$=Str$(SCORE)
; ¥** Add zeros
S$=Right$("0000000"+S$,7)

NPrint S$
*** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
MID$

Mode(s): Amiga/Blitz
Function: return number of characters from middle of string
Syntax: destination$=Mid$(SOURCE$,START[,NUMBER _OF CHARACTERS])

The MID$ function also works along the same lines. It returns the specified number of characters from
the middle of a string, starting with character number START. If the optional NUMBER_OF_CHARACTERS
parameter is omitted then all characters from START to the end of the string are returned. Here are
some examples which demonstrate the correct use of MID$.

Our first example splits up the source string (A$) into its component letters and displays them vertically:

*** Vertical text
*** Filename - Vertical Text.bb2

A$="Blitz Basic"

*** Use Workbench screen for output
WbToScreen ©

*** Send Workbench to front of display
WBenchToFront_

*** Attach window to Workbench screen
Window ©,10,50,600,160,$1|%2|$3|$8,"Vertical Text",0,1
For N=1 To Len(A$)

*** Split string up into characters

NPrint Mid$(A$,N,1)

Next
; ¥** Wait for a mouse click

37

2.String Functions

MouseWait

; *** Send Workbench to back of display
WBenchToBack

; ¥** Return to Blitz Basic 2 editor
End

The second example also splits up a string into letters, but this time the string is displayed horizontally,
one character at a time. This results in a "typewriter" effect, although some typists may disagree!:

*¥** Typewriter
*** Filename - Typewriter.bb2

*** Character delay
DELAY=4
*** Text string to output
TXT$="Blitz Basic is the most versatile BASIC on planet Earth!"
; *** Use Workbench screen for output
WbToScreen ©
; *** Send Workbench to front of display
WBenchToFront_
Window ©,10,50,600,160,$1|%$2|$3|$8, "Typewriter",0,1
; *** Character pointer
A=1
For B=0 To Len(TXT$)
*** Split string up into characters
Print Mid$(TXT$,A,1)
Let A+1
*** Pause typewriter
VWait DELAY

Next B
; *** Send Workbench to back of display
WBenchToBack

*** Return to Blitz Basic 2 editor
End

2.2 Manipulating strings

Just as numbers can be added, subtracted, multiplied and divided, strings can be manipulated with the
following functions.

UNLEFT$

Mode(s): Amiga/Blitz
Function: remove a number of rightmost characters from string
Syntax: new$=UnLeft$(SOURCE$, LENGTH)

38

2.String Functions

UNLEFT$ removes the specified number of characters from the end of a string and places the remaining
characters into a new string. The LENGTH parameter specifies the number of characters to remove. For
example:

; ¥** UnLeft$ example
*** Filename - UnLeft$.bb2

NPrint "Enter a string:"

*** Input text string to manipulate
A$=Edit$(40)

*** Tnput number of characters
NPrint "How many characters from end?:"
A=Edit(10)

¥¥* Qutput new text string
NPrint UnLeft$(A$,A)

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

UNRIGHT$

Mode(s): Amiga/Blitz
Function: remove a number of leftmost characters from string
Syntax: new$=UnRight$(SOURCE$, LENGTH)

Newton's third law of motion states thus: "Every action has an equal and opposite reaction.". In Blitz
Basic it often seems like every function has an equal and opposite function! UNRIGHT$, as you may
have guessed, removes a specified number of characters from the beginning of a string. The LENGTH
parameter specifies the number of characters to remove. Here's an example:

; *** UnRight$ example
; *** Filename - UnRight$.bb2

; *** Returns "Blitz is best!"

Print UnRight$("AMOSBlitz is best!",4)
; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

39

2.String Functions

LSET$*

Mode(s): Amiga/Blitz
Function: return a string of text of a given length
Syntax: new$=LSet$ (SOURCE$, LENGTH)

The LSET$ function returns a string of text of LENGTH characters long. If SOURCES$ is shorter than
LENGTH then the right-hand side of the string will be padded with spaces. The string will be truncated if
it is longer than LENGTH. Here are some examples:

; ¥** LSet$ example
; *** Filename - LSet$.bb2

; ¥** Returns "Blitz"

NPrint LSet$("Blitz Basic",5)

; ¥** Returns "S"

NPrint LSet$("Spaced out!",1)

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

RSET$

Mode(s): Amiga/Blitz
Function: return a string of text of a given length
Syntax: new$=RSet$ (SOURCE$, LENGTH)

The RSET$ function returns a string of text of LENGTH characters long. If SOURCES$ is shorter than
LENGTH then the left-hand side of the string will be padded with spaces. The left-hand side of the
string will be truncated if it is longer than LENGTH. Try the following examples:

; *** RSet$ example
; *** Filename - RSet$.bb2

; ¥** Returns "Wright"

NPrint RSet$("Neil Wright",6)

; ¥** Centres "Richard Irving"
NPrint RSet$("Richard Irving",45)

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

40

2.String Functions

STRIPLEADS

Function: remove all leading occurrences of a character
Syntax: new$=StripLead$ (SOURCE$,EXPRESSION)

The STRIPLEAD$ function removes all leading occurrences of an ASCII character from a source string.
EXPRESSION is the decimal ASCII code value to be removed. For example:

; *** StriplLead$ example
; *** Filename - StriplLead$.bb2

; *** Remove leading B character
;5 *** (Returns "litz Basic")
Print StripLead$("Blitz Basic",66)
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

To remove all trailing occurrences of an ASCII character the equivalent STRIPTRAIL$ function may be
used.

TRIPTRAIL$

Mode(s): Amiga/Blitz
Function: remove all trailing occurrences of a character
Syntax: new$=StripTrail$ (SOURCE$,EXPRESSION)

Here is an example:

; ¥*¥* StripTrail$ example
; *** Filename - StripTrail$.bb2
A$="There are "
*** Remove trailing spaces
Print StripTrail$(A$,32)+" no spaces”
*** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

41

2.String Functions

CENTRES

Mode(s): Amiga/Blitz
Function: return a centred text string
Syntax: a$=Centre$ (SOURCE$,CHARACTERS)

The CENTRE$ function returns a centred text string of length CHARACTERS. If SOURCES$ is shorter than
the specified number of characters then the resulting string will be padded with spaces. If SOURCE$ is
longer then it will be truncated on either side. Try the following examples:

; *** Detention centre$
; *¥** Filename - Centre$.bb2

; ¥** Returns "tz Ba"

NPrint Centre$("Blitz Basic",5)

; *** Returns " Blitz "

NPrint Centre$("Blitz",7)

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

Just as dinosaurs can be cloned (or so movie-makers would like us to believe!), so can text strings. Blitz
Basic doesn't support DNA directly so you have to make do with the STRING$ function.

STRINGS

Mode(s): Amiga/Blitz
Function: create a new string using copies of an old string
Syntax: new$=String$ (SOURCE$,NUMBER)

STRING$ will create a new string containing a specified number of copies of a source string. For
example:

; *** String$ example
; *** Filename - String$.bb2

NPrint ""

NPrint "Input any old garbage:-"
NPrint ""

; *¥** Input a text string
A$=Edit$(10)

NPrint ""

5 ¥** Multiply string by five
B$=String$(A$,5)

42

2.String Functions

Print "* 5 = ",B$

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

2.3 String searching

Applications such as word processors and programming utilities often have string searching facilities.
These work by breaking down and analysing text files until matching strings are found (the search), and
replacing text with new strings (the replace). Blitz Basic has two commands for total control over string
searching.

2.3.1 Searching for characters in a string

INSTR

Mode(s): Amiga/Blitz
Function: search for occurrences of one string within another
Syntax: a=Instr(SOURCE$,FIND$[,START])

The INSTR function enables you to search for one string within another. If the search is successful then
the character position of the first matching character will be returned. If the search is unsuccessful then
(0) will be returned.

The optional START parameter allows you to specify the starting character for the search. Values for
START may range from zero to the length of the string. Here is an example:

; *** String searching
; *** Filename - Instr_Example.bb2

Restore DAT
NPrint "Input a letter or word to search"
; ¥** Input word to search
SEARCH$=Edit$(40)
; *** Convert to upper case
SEARCH$=UCase$ (SEARCH$)
For A=1 To 6
; *¥** Read data statements
Read A$
B$=UCase$ (A$)
; ¥** Does string exist?
If Instr(B$,SEARCH$)
Print A$
; ¥** Wait for a mouse click
MouseWait
End
End If

43

2.String Functions

Next A

; ¥** Unsuccessful search

NPrint "No match found"

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

; ¥** Data to search

DAT:

Data$ "Blitz"
Data$ "AMOS"
Data$ "GFA"

Data$ "Hisoft"
Data$ "Amiga"
Data$ "Spectrum"

The CASESENSE statement may be used to determine whether the search is case sensitive.

2.3.2 Replacing characters in a string

REPLACE$

Mode(s): Amiga/Blitz
Function: replace any occurrences of a string with a new string
Syntax: new$=Replace$ (SOURCE$, FIND$,NEWS)

REPLACES is used to search for one string within another and replace it with a new string. SOURCE$ is
the string to be searched, FIND$ is the string to be found and NEWS$ is the replacement string. For
example:

; *** Replace$ example
; *** Filename - Replace$.bb2

; *¥** Text string to manipulate

A$="AMOS Basic is tops!"

NPrint A$

VWait 50

; *** Replace the word "AMOS" with "Blitz"
A$=Replace$ (A%, "AMOS","Blitz")

NPrint A$

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

The CASESENSE statement may be used to determine whether the search is case sensitive.

44

2.String Functions

2.3.3 Case sensitivity

Upper and lower case letters are treated as completely different letters by Blitz Basic. For example, the
word "natch" is different to "NATCH". This is known as case sensitivity. The INSTR and REPLACE$
commands are, by default, case sensitive.

CASESENSE

Mode(s): Amiga/Blitz
Statement: control the searching mode used by INSTR and REPLACE$
Syntax: CaseSense On/Off

CASESENSE is used to determine whether or not the INSTR and REPLACE$ functions are case sensitive.

In the example below, the string to search must be entered in the correct case (e.g. DOG, cAT, HAmster),
otherwise a match will not be found:

; *** CaseSense example
; *** Filename - CaseSense.bb2

Dim A$(5)
; *** Read data into memory
Restore DAT
For A=1 To 5
Read A$(A)
Next A
; *¥** Case sensitivity on
CaseSense On
NPrint "Input string to search (from data list)"
B$=Edit$(10)
For B=1 To 5
; ¥** Exact match found
If Instr(A$(B),B$)=1
NPrint B$," found at location ",B
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
Else
; *** No match found
NPrint B$," not found"
; ¥** Wait for a mouse click
MouseWait
; ¥*¥* Return to Blitz Basic 2 editor
End
EndIf
Next B

; *** Program data
DAT:

45

2.String Functions

Data$ "DOG"
Data$ "cAt"
Data$ "HAmster"
Data$ "rAt"

Data$ "WoMaN"

This is the same example, but this time without case sensitivity (i.e. the strings can be entered in any
case). For example:

*** CaseSense example 2
; *¥** Filename - CaseSense2.bb2

Dim A$(5)
; *** Read data into memory
Restore DAT
For A=1 To 5
Read A$(A)
Next A
; ¥** Case sensitivity off
CaseSense Off
NPrint "Input string to search (from data list)"
B$=Edit$(10)
For B=1 To 5
; ¥** Match found (case ignored)
If Instr(A$(B),B$)=1
NPrint B$," found at location ",B
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
Else
*** No match found
NPrint B$," not found"
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
EndIf
Next B

; *** Program data

DAT:

Data$ "DOG"
Data$ "cAt"
Data$ "HAmster"
Data$ "rAt"

Data$ "WoMaN"

46

2.String Functions

2.4 Converting strings

One facility that we haven't looked at so far is the conversion between upper and lower case letters.
Upper case letters are often referred to as "capitals”.

UCASE$

Mode(s): Amiga/Blitz
Function: convert a string of text to upper case
Syntax: upper$=UCase$ (SOURCE$)

The UCASE$ function simply converts a source string into upper case characters. Here are some
examples:

; ¥** UCase$ example
; *** Filename - UCase$.bb2

;5 *¥*¥* Will print "BLITZ BASIC"

Print UCase$("blitz basic")

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

This second example splits up a string of text into individual words and capitalises the first letter of each
word. It is a good demonstration of how MID$ can be used to chop up strings:

; *** UCase$ example2
; *** Filename - UCase$_Example2.bb2

Print "Please input your full name:"
;5 ¥** Input string and convert to lower case
A$=Edit$(80)
A$=LCase$(A$)
A=1
B=1
;5 ¥** Chop up string into words
While A<=Len(A$)
If B=1
; *¥** Convert first letter to capitals
A$=Mid$(A$,1,A-1)+UCase$(Mid$(A$,A,1))+Mid$(AS,A+1)
B=0
End If
; ¥** New word found
If Mid$(A$,A,1)=" "
B=1
End If

47

2.String Functions

Let A+l
Wend
*** Qutput new string
NPrint A$
ViWait 50
*** Return to Blitz Basic 2 editor
End

LCASE$

Mode(s): Amiga/Blitz
Function: convert a string of text to lower case
Syntax: lower$=LCase$ (SOURCE$)

Working along similar lines, the LCASE$ function converts a source string into lower case characters. For
example:

*** | ower and lower
; *** Filename - LCase$.bb2

LOWER$="TOTALLY BLITZED"
LOWER$=LCase$ (LOWER$)
; ¥** Will print "totally blitzed"
Print LOWER$

*** Wait for a mouse click
MouselWait
; *** Return to Blitz Basic 2 editor
End

You may find it useful, at times, to manipulate numbers in the same way as strings. Unfortunately the
Blitz Basic string functions do not support numeric expressions directly. To get around this problem you
have to convert numeric variables into text strings using the STR$ function.

STR$

Mode(s): Amiga/Blitz
Function: convert a number into a text string
Syntax: new$=Str$(EXPRESSION)

STR$ converts a numeric variable into a text string. This function allows you to manipulate numbers
using string functions. Here is an example:

48

2.String Functions

*** Str$ example
; *** Filename - Str$.bb2

SCORE=100
; ¥** Convert number to string
S$=Str$(SCORE)
Print S$

*** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

USTR$

Mode(s): Amiga/Blitz
Function: convert a number into a text string
Syntax: new$=UStr$(EXPRESSION)

USTR$ converts a numeric variable into a text string. This function allows you to manipulate numbers
using string functions. Unlike STR$, USTR$ is not affected by any active FORMAT commands (consult
Chapter 5 for more information on formatting numeric strings). For example:

*** UStr$ example
; ¥** Filename - UStr$.bb2

A=999
A$=UStr$(A)

*¥** Will print "999"
NPrint A$
A$=Left$(A%,1)

;5 ¥** Will print "9"

NPrint A$

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

The logical opposite of STR$ is the VAL function. VAL converts a numeric string back into a numeric
variable.

49

2.String Functions

VAL

Mode(s): Amiga/Blitz
Function: convert a text string into a number
Syntax: a=Val (SOURCE$)

To convert a numeric string into a numeric variable use the VAL function. This conversion will fail, and
return (0), if a non-numeric value or second decimal point is found. Here are some examples:

*** Added VALue
; ¥** Filename - Val.bb2

; *¥** Will print 180
NPrint Val("180")

*** Will print @ (failed conversion)
NPrint Val("ABC")

*** Will print © (failed conversion)
NPrint Val("10.10.10")

*** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

2.5 Obtaining string information

CHR$

Mode(s): Amiga/Blitz
Function: return a one character string with a given ASCII code
Syntax: s$=Chr$ (CODE)

The CHR$ function will return a one-character string equivalent to the specified ASCIl code. This little
example outputs the whole ASCII character set to the screen:

; ¥** Chr$ example
***% Filename - Chr$.bb2

For A=32 To 253
Print Chr$(A)
Viait
Next A
; ¥** Wait for a mouse click
MouseWait

50

2.String Functions

**¥* Return to Blitz Basic 2 editor
End

ASC

Mode(s): Amiga/Blitz
Function: return the ASCII code of a given character
Syntax: code=Asc (SOURCE$)

ASC will return the ASCII code of the first character in SOURCES$. Try the following examples:

; *¥** Some Asc examples
**¥* Filename - Asc.bb2

; *** Returns "32"
NPrint Asc(" ")
; ¥** Returns "65"
NPrint Asc("A")
; *** Returns "66" ("B")
NPrint Asc("BLITZ BASIC")
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

One of the most important things you need to know about a string is its length. This can be determined
as follows.

LEN

Mode(s): Amiga/Blitz
Function: return the length of a string
Syntax: length=Len(SOURCE$)

The LEN function returns the number of characters in SOURCE$. For example:

*¥** | en example
; ¥** Filename - Len.bb2

NPrint ""
; *¥** Input string to test
NPrint "Input your name:"
A$=Edit$(30)
**¥* Count characters in string
Print "Your name is ",Len(A$)," letter(s) long"

51

2.String Functions

ViWait 100
; ¥** Return to Blitz Basic 2 editor
End

2.6 Character strings

The following functions are used to convert complex numbers into simple two and four byte text strings
in order to save space when writing values to sequential files. Integers, long values, and quick values are
currently supported by Blitz Basic (consult Chapter 1 for a full discussion of Blitz Basic types).

2.6.1 Integers
Integers, as we have already established, are whole numbers (e.g. 8, 108, 1008, and 10,008).

MKI$

Mode(s): Amiga/Blitz
Function: return a two byte character string
Syntax: m$=Mki$ (INTEGER)

This function creates a two byte character string from the two byte INTEGER parameter. MKI$ is often
used when writing integer values to sequential files to save on disk space.

cvi

Mode(s): Amiga/Blitz
Function: logical opposite of MKI$
Syntax: c=Cvi(STRING$)

CVI is the logical opposite of MKI$. The function is used to convert the two byte character string
generated by MKI$ back to an integer. Try the following example:

; *** Mki$/Cvi example
; ¥** Filename - Cvi.bb2

If WriteFile (@,"RAM:INTEGER")
; ¥** Open sequential file
FileOutput ©
; ¥** Convert integer and save to file
Print Mki$(16705)
; *** Close sequential file
CloseFile ©
DefaultOutput
If ReadFile (@, "RAM:INTEGER")
; *** Read sequential file
FileInput ©
; *** Convert character string

52

2.String Functions

NPrint Cvi(Edit$(40))
; *** Close sequential file
CloseFile ©
DefaultInput
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EndIf

EndIf

2.6.2 Long values
Long values are integers with much greater range (+/- 2147483648).

MKL$

Mode(s): Amiga/Blitz
Function: return a four byte character string
Syntax: m$=Mk1$ (LONG)

The MKL$ function creates a four byte character string from the four byte LONG parameter. MKL$ is
often used when writing long values to sequential files to save on disk space.

CVL

Mode(s): Amiga/Blitz
Function: logical opposite of MKL$
Syntax: c=Cv1(STRINGS$)

CVL is the logical opposite of MKL$. The function is used to convert the four byte character string
generated by MKL$ back to a long:

; ¥** Mk1l$/Cvl example
; ¥** Filename - Cvl.bb2

If WriteFile (O, "RAM:LONG")
; *** Open sequential file
FileOutput ©
; *** Convert long and save to file
Print Mkl$($dffo00)
; *** Close sequential file
CloseFile ©
DefaultOutput
If ReadFile (O, "RAM:LONG")
; *** Read sequential file
FileInput ©

53

2.String Functions

; ¥** Convert character string
NPrint Hex$(Cv1(Edit$(40)))
; *** Close sequential file
CloseFile ©
DefaultInput
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

EndIf

EndIf

2.6.3 Quick values

Quick values are fixed-point numeric types, with four decimal point accuracy (e.g. 56.0000, 3.1415 and
45,6789). Quicks are less accurate than floating point numbers but much faster.

MKQ$

Mode(s): Amiga/Blitz
Function: return a four byte character string
Syntax: m$=Mkq$ (QUICK)

MKQ$ creates a four byte character string from the four byte QUICK parameter. MKQ$ is often used
when writing quick values to sequential files to save on disk space.

cvaQ

Mode(s): Amiga/Blitz
Function: logical opposite of MKQ$
Syntax: c=Cvq(STRING$)

CVQ is the logical opposite of MKQ$. The function is used to convert the four byte character string
generated by MKQ$ back to a quick. For example:

; ¥** Mkq$/Cvq example
; *** Filename - Cvq.bb2

If WriteFile (0, "RAM:QUICK")
; *** Open sequential file
FileOutput ©
; *** Convert quick and save to file
Print Mkq$(500/7)
; *** Close sequential file
CloseFile ©
DefaultOutput
If ReadFile (@, "RAM:QUICK")

54

2.String Functions

*** Read sequential file
FileInput ©

*** Convert character string
NPrint Cvq(Edit$(40))

*** Close sequential file
CloseFile ©
DefaultInput

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

EndIf
EndIf

2.7 End-of-Chapter summary

Text strings are surrounded by quotation marks and all string names must end with the dollar (%)
character. They can comprise of characters, numbers or even spaces. Strings can be shortened,
lengthened, converted to upper and lower case, counted, cloned, searched and even turned into
numbers!

Table 2.1 : String functions

Command Function

ASC Return ASCII code of character
CASESENSE Toggle case sensitivity

CENTRE$ Centre a string

CHR$ Return character given ASCII code

CcvI Logical opposite of Mki$

CVL Logical opposite of Mk1l$

CcvQ Logical opposite of Mkq$

INSTR Search for character in a string
LCASE$ Convert a string into lower case

LEFT$ Return leftmost characters of a string
LEN Return length of a string

LSET$ Return a string of given length

MID$ Return middle characters of a string
MKI$ Create a two byte string from an integer
MKL$ Create a four byte string from a long
MKQ$ Create a four byte string from a quick
REPLACE$ Replace character in a string

RIGHT$ Return rightmost characters of a string
RSET$ Return a string of given length
STRING$ Clone a string

STRIPLEAD$ Remove leading character
STRIPTRAIL$ Remove ending character

STR$ Convert a number into a string
UCASE$ Convert a string into upper case
UNLEFT$ Remove rightmost characters
UNRIGHT$ Remove leftmost characters

55

2.String Functions

USTR$ Convert a number into a string
VAL Convert a string into a number

56

Chapter 3 : Mathematics

Computers are basically giant number crunchers, so it will come as no great surprise that the Amiga -
and Blitz Basic 2 - are great at performing mathematical functions. This chapter will introduce the Blitz
Basic maths commands, before moving onto more advanced machine code instructions.

3.1 Arithmetical operators
As explained in Chapter 1, the following operators are used to perform arithmetical operations:

Table 3.1 : Arithmetical operators

Operator Description

& Multiplication
/ Division

+ Addition

- Subtraction

n Exponential

For example:

5 ¥F* Arithmetic
; *** Filename - Arithmetic.bb2

NPrint 2*5 ; *** 2 times 5 = 10

NPrint 20/2 ; *** 20 divided by 2 = 10
NPrint 545 ; *** 5 plus 5 = 10

NPrint 15-5 ; *** 15 minus 5 = 10

NPrint 1071 ; *** 10 to the power 1 = 10
; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

The following text provides an insight into Blitz Basic's more powerful mathematical commands.

3.2 Sign on the dotted line

SGN

Mode(s): Amiga/Blitz
Function: return the sign of a number
Syntax: sign=Sgn(EXPRESSION)

57

3.Mathematics

The SGN function returns a value which indicates the sign of a number. If the number is negative then
(-1) is returned. If the number is zero then (0) is returned, and if the number is positive then (1) is
returned.

Table 3.2 : Values returned by SGN

Expression Result

Negative -1
Zero 0
Positive 1

For example:

; ¥** Return the sign of a number
; *** Filename - Sgn.bb2

Print "Input a number:"
; ¥** Input number to test
E=Edit(40)
; *¥** Return sign of number
SIGN=Sgn(E)
*** Number is negative
If SIGN=-1 Then Print "Negative"
*** Number is equal to ©
If SIGN=0 Then Print "“Zero"
*** Number is positive
If SIGN=1 Then Print "Positive"
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

ABS

Mode(s): Amiga/Blitz
Function: return an absolute value
Syntax: a=Abs (EXPRESSION)

The ABS function returns the absolute value of a number. It is used to convert a numeric expression into
a positive number. This results in the following return values:

58

3.Mathematics

Table 3.3 : Values returned by ABS

Expression Abs(EXPRESSION) is:

Negative Positive

Zero 0

Positive Positive
For example:

; ¥** Return the absolute of a number
*** Filename - Abs.bb2

A=Abs(-100)

*¥** Returns "100"
Print A

*** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

QABS

Mode(s): Amiga/Blitz
Function: return the absolute value of a quick value
Syntax: g=QAbs (QUICK)

QABS works similarly to ABS except that is uses quick values. Because of this the function operates
noticeably quicker than ABS. However, you are limited by the restrictions of the quick type of value. For
example:

; *** QAbs example
; ¥** Filename - QAbs.bb2

; ¥** Returns "16"
Print QAbs(-16)
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

59

3.Mathematics

3.3 Floating point numbers

FLOATMODE

Mode(s): Amiga/Blitz
Statement: change format of floating point numbers
Syntax: FloatMode MODE

FLOATMODE enables you to change how floating point numbers are output by the PRINT and NPRINT
commands. Floating point numbers may be displayed in one of three ways, as follows:

® Exponential format (Mode 1)
¢ Standard format (Mode -1)
e Guessed format (Mode 0 - Default mode)

Exponential format displays a floating point number as a value multiplied by ten raised to a power.
Standard format displays values as they are (What You See Is What You Get). Guessed format forces
Blitz to take a stab-in-the-dark as to the most appropriate mode to use. Here are some examples:

; *** FloatMode examples
; *** Filename - FloatMode.bb2

A.f=180.57

NPrint A," best guess"”

FloatMode 1

NPrint A," exponential”

FloatMode -1

NPrint A," standard"

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

INT

Mode(s): Amiga/Blitz
Function: convert floating point number into integer
Syntax: i=Int (EXPRESSION)

The INT function returns the integer part of a floating point number by rounding down it down to the
nearest whole number. For example:

60

3.Mathematics

*** INTeresting
; ¥** Filename - Int.bb2

NPrint "Input a number with decimal places"”
; ¥** Input floating point number
A=Edit(40)
; *** Return integer part of number
Print Int(A)
*** Wait for a mouse click
MouseWait
**¥* Return to Blitz Basic 2 editor
End

FRAC

Mode(s): Amiga/Blitz
Function: return the fractional part of an expression
Syntax: f=Frac (EXPRESSION)

The FRAC function returns the fractional part of a number (the figures after the decimal point), thus
removing the whole number value:

; *** Frac example
; ¥** Filename - Frac.bb2

; ¥** Returns "1415925"

Print Frac(Pi)

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

QFRAC

Mode(s): Amiga/Blitz
Function: return the fractional part of a quick value
Syntax: g=QFrac(QUICK)

QFRAC returns the fractional part of a quick value. It is significantly faster than FRAC, however it can
only use quick values. Here is an example:

61

3.Mathematics

; *** QFrac example
; *** Filename - QFrac.bb2

; ¥** Returns ".4"
Print QFrac(3.4)
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

3.4 Standard mathematical functions

SQR

Mode(s): Amiga/Blitz
Function: calculate square root
Syntax: square=Sqr (EXPRESSION)

This function calculates the square root of a numeric expression. The expression must be a positive
number. When the expression is smaller than zero an error is returned. For example:

*** Square eyed
*** Filename - Sqr.bb2

*¥** Returns "3"
NPrint Sqr(9)

*** Returns "2.828427"
NPrint Sqr(8)
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

EXP

Mode(s): Amiga/Blitz
Function: calculate exponential
Syntax: exponential=Exp(VALUE)

The EXP function is used to return the exponential of a specified value. It calculates the xth power to the
base of the number (e=2.1782818284):

62

3.Mathematics

; *** EXPressive example
; *** Filename - Exp.bb2

Print Exp(1)

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

LOG10

Mode(s): Amiga/Blitz
Function: return logarithm
Syntax: a=Logl0(VALUE)

LOG10 returns the base 10 logarithm of a given value. For example:

; ¥** Logle example
; ¥** Filename - Logl@.bb2

; ¥** Returns ".9999999"

Print Logle(10)

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

LOG

Mode(s): Amiga/Blitz
Function: return natural logarithm
Syntax: a=Log(VALUE)

This returns the natural (base e) logarithm of a given value. For example:
; *** Log example
; ¥** Filename - Log.bb2
; ¥** Returns "2.302584"
Print Log(10)

; ¥** Wait for a mouse click
MouseWait

63

3.Mathematics

**¥* Return to Blitz Basic 2 editor
End

3.5 Trigonometry

Pl

Mode(s): Amiga/Blitz
Function: return the Pi constant
Syntax: p=Pi

This function returns the Pi constant (3.14159265359...). This number is the ratio of the circumference of
a circle to its diameter, and is often used in trigonometry-based calculations. There is no actual value
for Pi as it goes on for an infinite number of decimal places. In Blitz Basic, Pi is accurate to six decimal
places. For example:

; ¥*¥* A slice of Pi
; ¥** Filename - Pi.bb2

; ¥** Returns "3.141592"

Print Pi
*¥** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End
SIN

Mode(s): Amiga/Blitz
Function: calculate sine of an angle
Syntax: s=Sin(ANGLE)

The SIN function returns the sine of an angle. One very important graph, the sine wave,is used to model
many natural phenomena, including sound and light waves. Because the sine function repeats every 360
degrees the graph of (Y=Sin(X)) is periodic.

The following example uses SIN to display a string on a sine wave:

*** Sine text
*** Filename - Sine Text.bb2

*** Sine wave variables

RADIUS=10
OFFSET=0

64

3.Mathematics

YOFFSET=15
; ¥** Text string to sine
SINE$="Realtime sine wave text in Blitz BASIC!"
; ¥** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,1,13,13,13
; *** Open screen and grab its BitMap
Screen 0,1,"Sine text"
ScreensBitMap 0,0
; *** Direct PRINT statement to BitMap
BitMapOutput ©
Use Palette ©
While X<=Len(SINE$)
*** Grab characters, one by one
TXT$=Mid$ (SINE$,OFFSET,1)
*** Y co-ordinate on sine wave
Y=Sin(XY)*RADIUS
Let XY+0.1
If XY6
XY=0
End If
**¥* Qutput characters
Locate X,Y+YOFFSET
Print TXT$
*** Next character
Let X+1
Let OFFSET+1
Wend
; ¥** Wait for a mouse click
MouseWait
; ¥*¥* Return to Blitz Basic 2 editor
End

Ccos

Mode(s): Amiga/Blitz
Function: calculate cosine of an angle
Syntax: c=Cos (ANGLE)

The COS function returns the cosine of an angle. The graph of (Y=Cos(X)) is exactly the same shape as
the sine curve except that it has been translated 90 degrees to the left. For example:

**¥* Cosine wave
; *¥** Filename - Cos.bb2

; ¥** Define palette

PalRGB 0,0,0,0,0

PalRGB ©,1,13,13,13

; ¥** Open BLITZ mode display

65

3.Mathematics

BLITZ
BitMap 0,320,DispHeight,1
Slice 0,44,320,DispHeight, $fff8,1,8,2,320,320
Use Palette ©
Show ©
*** Draw line at centre of cosine wave
Line 0,100,320,100,1
*** plot simple cosine wave
For A=1 To 3000
Plot 10+A/10,Cos(Pi*2*A/1000)*80+100,1
Next
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

TAN

Mode(s): Amiga/Blitz
Function: calculate tangent of an angle
Syntax: t=Tan (ANGLE)

The TAN function returns the tangent of an angle. The following example uses TAN to create tangent
contours (a silly idea of mine):

; *** Tangent contours
; ¥** Filename - Tan.bb2

; ¥** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,2,0,6,0
; *** Open Intuition screen
Screen 0,3,"Hello"
ScreensBitMap 0,0
*** Grab user palette
Use Palette ©
Cls 2
*** plot tangent wave
For B=1 To 4000
Plot B/10,Tan(Pi+B)*80+80,1

Next

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

66

3.Mathematics

ASIN

Mode(s): Amiga/Blitz
Function: calculate arc sine
Syntax: a=ASin(NUMBER)

ASIN calculates the angle needed to generate a value with SIN (an arc sine).

ACOS

Mode(s): Amiga/Blitz
Function: calculate arc cosine
Syntax: a=ACos (NUMBER)

Similarly, ACOS returns the arc cosine of a given number.

ATAN

Mode(s): Amiga/Blitz
Function: calculate arc tangent
Syntax: a=ATan(NUMBER)

The ATAN function returns the arc tangent of a given number.

HSIN

Mode(s): Amiga/Blitz
Function: calculate hyperbolic sine
Syntax: h=HSin(ANGLE)

The HSIN function calculates the hyperbolic sine of an angle.

HCOS

Mode(s): Amiga/Blitz
Function: calculate hyperbolic cosine
Syntax: h=HCos (ANGLE)

This function is used to find the hyperbolic cosine of an angle.

67

3.Mathematics

HTAN

Mode(s): Amiga/Blitz
Function: calculate hyperbolic tangent
Syntax: h=HTan (ANGLE)

HTAN returns the hyperbolic tangent of an angle.

3.6 Random numbers

Blitz Basic 2 comes complete with an inbuilt function to generate random numbers. Actually the
numbers aren't really random as they're the result of a decision made by the computer. If you knew
how Blitz created its random numbers then you'd be able to predict exactly which "random number" it
would select next.

It'd be pretty difficult to do this though because the computer chooses each number from a very long
list, and then repeats the list when it gets to the end. It would be almost impossible to figure out when
the list began again.

Public awareness of random numbers and of the laws of probability has increased greatly since the
launch of the National Lottery. Whilst Blitz Basic can't predict the results of the Lottery, it can be used to
generate a personalised set of numbers for you!

Right, now you've got the basic concept behind random numbers here's how Blitz Basic generates
them.

RND

Mode(s): Amiga/Blitz
Function: generate a random number
Syntax: r=Rnd[(NUMBER)]

The RND function returns a random integer between zero and NUMBER. If the optional NUMBER
parameter is not included then a random decimal between (0) and (1) is returned. Here is an example:

; *** Plot Starfield
; *** Filename - Plot_Example.bb2

; ¥** Number of stars in starfield

STARS=100

; ¥** Define palette (lots of whites and greys)
PalRGB 0,0,0,0,0

PalRGB 0,1,10,10,10

PalRGB 0,2,7,7,7

PalRGB 90,3,3,3,3

; *** Pop into Blitz mode

BLITZ

68

3.Mathematics

; *** Open BitMap
BitMap ©,320,DispHeight,2
; ¥** Plot starfield at random co-ordinates
For A=0 To STARS

Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
; ¥** Open slice to display BitMap graphics
Slice 0,44,320,DispHeight, $fff8,2,8,8,320,320
; *** Grab user palette
Use Palette ©

Show ©

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

3.7 Machine code

Instead of using the decimal system, with ten as its base, computers use a form of binary called
hexadecimal (or hex for short), based on sixteen. As there are only ten digits available in our number
system we need six extra digits to do the counting. So we use A, B, C, D, E and F. And what comes after
F? Just as we, with ten fingers, write 10 for ten, so computers write 10 for sixteen.

HEX$

Mode(s): Amiga/Blitz
Function: convert a decimal number into a hexidecimal number
Syntax: h=Hex$ (VALUE)

The HEX$ function converts numbers from the decimal system into hexadecimal numbers. The
hexadecimal system counts in units of 16 rather than 10, so a total of 16 different digits is needed to
represent the different numbers. The digits from 0 to 9 are used as normal, but the digits from 10 to 15
are signified by the letters A to F inclusive.

The decimal value to be converted is specified in brackets. The following chart shows the first 15
hexadecimal numbers, along with their decimal equivalents.

Table 3.4 : Hexadecimal notation

Hex digit: ©123456789A B C D E F
Decimal: 012345678910 11 12 13 14 15

Here are a couple of examples:

; *** Hex$ example
; *** Filename - Hex$.bb2

69

3.Mathematics

; ¥** Returns "9"

NPrint Hex$(9)

; ¥** Returns "A"

NPrint Hex$(10)

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

In fact, computers behave as though they had only two digits, represented by a low voltage, or off (0),
and a high voltage, or on (1). This is called the binary system, and the two binary digits are called bits:
so a bit is either (0) or (1).

BINS

Mode(s): Amiga/Blitz
Function: convert a decimal number into a binary number
Syntax: b=Bin$ (VALUE)

BINS$ converts a decimal number into the equivalent binary number. Here is a short program which
prints the first 50 binary and hexadecimal numbers:

; *** Bin$ it!
; *** Filename - Bin$.bb2

For A=1 To 50
NPrint Hex$(A)," ",Bin$(A)

Next A

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

PEEK and POKE are two Basic commands which beginners often have problems with, although they are
really very simple. They differ from most Basic in that they act directly on the numbers stored in
computer memory. When you PEEK into a memory location the result is the number stored there with
POKE.

POKE

Mode(s): Amiga/Blitz
Statement: poke data into a memory location
Syntax: Poke [.TYPE] ADDRESS,DATA

The POKE statement moves a number from zero to 255 into the memory location at the specified
address. Here is an example:

70

3.Mathematics

; *¥** Poke example
; *¥** Filename - Poke.bb2

; *** Nip into BLITZ mode
BLITZ
; ¥** 32 colour display
BitMap ©,320,256,5
Slice 0,44,5
Show ©
X=0
; ¥** Poke colour register
For A=0 To 5000

Poke.w $DFF180,X

Let X+1

If X=255

X=0

End If
Next A
; *** Return to Blitz Basic 2 editor
End

PEEK

Mode(s): Amiga/Blitz
Function: return the contents of a memory location
Syntax: p=Peek [.TYPE](ADDRESS)

The PEEK function returns a single 8-bit byte from a memory location at the specified address. For
example:

; *¥** Peek example
; ¥** Filename - Peek.bb2

;5 ¥** Put number 39 in address 10
Poke 10,39
; ¥** Grab contents of address 10
NPrint Peek(10)

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

71

3.Mathematics

PEEKS$

Mode(s): Amiga/Blitz
Function: return a string of peeked bytes
Syntax: p$=Peeks$ (ADDRESS, LENGTH)

PEEK$ reads the maximum number of characters specified in the LENGTH parameter, into a new string.
The ADDRESS parameter is the location of the first character to be read:

; ¥** peek$ example
; *** Filename - Peek$.bb2

; ¥** put Blitz Basic in address 10
Poke$ 10,"Blitz Basic"

; ¥** Grab contents of address 10
NPrint Peek$(10)

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

CALL

Mode(s): Amiga/Blitz
Statement: call a machine code program
Syntax: Call ADDRESS

The CALL statement is used to run a machine code program straight from the memory location
specified by the ADDRESS parameter. For example:

; *** Call example
; ¥** Filename - Call.bb2

a.l=AllocMem_(14,1)

; *** Read machine code into memory
For k=0 To 12 Step 2

Read w.w

Poke a+k,w
Next

; ¥** Call machine code program
For B=1 To 10

Call a
Next B

72

3.Mathematics

MouseWait
FreeMem_ a,14

; *** A machine code program

Data.w $70ff,$33c0,$00df,$f180,%$51c8,$fff8,$4e75
*** Wait for a mouse click

MouselWait
*** Return to Blitz Basic 2 editor

End

3.8 End-of-Chapter summary

Blitz Basic supports standard mathematical functions such as exponentials and logarithms.

The powerful trigonometry functions include sine (SIN), cosine (COS) and tangent (TAN).
Random numbers can be generated using the RND function.

The hexadecimal system counts in units of 16 and the binary system uses zeros (0) and ones (1).
Machine code programs can be run from memory using the CALL statement.

Table 3.5 : Mathematics commands

Command Function

ABS Return an absolute value

ACOS Calculate arc cosine

ASIN Calculate arc sine

ATAN Calculate arc tangent

BIN$ Return binary number

CALL Call a machine code program

Cos Calculate cosine of an angle

EXP Calculate exponential

FLOATMODE Change format of floating point numbers
FRAC Return fractional part of an expression
HCOS Calculate hyperbolic cosine

HEX$ Return hexadecimal number

HSIN Calculate hyperbolic sine

HTAN Calculate hyperbolic tangent

INT Return an integer

LOG Return natural logarithm

LOG10 Return logarithm

PEEK Return contents of memory location
PEEK$ Return a string of peeked bytes

PI Return Pi constant

POKE Poke data into memory location

QABS Return the absolute value of a quick
QFRAC Return fractional part of a quick
RND Generate a random number

SGN Return the sign of a number

SIN Calculate sine of an angle

73

3.Mathematics

SQR Calculate square root
TAN Calculate tangent of an angle

74

Chapter 4 : Control Structures

Control structures are those instructions which allow the Blitz Basic programmer to make decisions.
There are five main types of control structure: unconditional jumps, conditional jumps and structured
tests, conditional loops, unconditional loops, and controlled loops.

The chapter will also show you how to create Interrupt and error-trapping structures, and procedure
definitions.

4.1 Unconditional jumps

Unconditional jumps are those which require no decision-making whatsoever - they simply allow
branching from one part of a program to another. If computer programs were executed one line after
another, and jumping about to different parts of the program was not possible then code would very
quickly become messy and inefficient (see later). Here's how program flow can be transferred from the
main program to a sub-program, or sub-routine.

GOTO

Mode(s): Amiga/Blitz
Statement: jump to a specified program label
Syntax: Goto LABEL

With the help of a label, positions within a program can be set to allow branching with the GOTO
statement. The program execution is then branched to the position of the label. The label can be made
up of letters and numbers, however it must end with a colon. When branching to a label with GOTO, the
colon is not included in the name. It is not possible to branch out of or into procedures with the GOTO
statement. For example:

; *** Goto example
; ¥** Filename - Goto.bb2

NPrint "Jumping to label in a tick..."

VWait 50

;5 *** Jump to sub-routine

Goto LABEL

; *** Program flow cannot continue
End

; ¥** Sub-routine

LABEL:

NPrint "Arrived at label™

ViWait 50

; ¥** Return to Blitz Basic 2 editor
End

75

4.Control Structures

Most programmers (such as myself) hate GOTOS as they make code messy and unreadable, so do use
them sparingly!

Another popular unconditional jump is the GOSUB, which is used to branch program flow from the
main program, to a sub-routine. A sub-routine is a sort of mini-program within a program. It carries out
a particular task, such as updating the display or printing a message, and you can send the computer to
it whenever you want this task carried out. This saves writing out the same program lines each time and
makes the program shorter and infinitely more readable.

In Blitz Basic, to tell the computer to branch to a sub-routine, you use the GOSUB statement. Sub-
routines can be positioned anywhere in your code and can be called as many or as few times as you
like.

GOSUB

Mode(s): Amiga/Blitz
Statement: jump to a sub-routine
Syntax: Gosub LABEL

RETURN

Mode(s): Amiga/Blitz
Statement: return from a sub-routine called by Gosub
Syntax: Return

The GOSUB statement branches program execution to the position of the label (known as a sub-
routine). The sub-routine is terminated by the RETURN statement. Unlike GOTO, GOSUB remembers the
location of the command immediately after the GOSUB (known as the stack). The RETURN statement
branches program execution back to the stack. This method allows one part of a program to be
accessed by many other parts of the same program. Here is an example:

*** Gosub and Return example
*** Filename - Gosub_Return.bb2

For A=1 To 3

NPrint "This is the main program."

VWait 50

*¥** Jump to sub-routine

Gosub LABEL2
Next A

*¥** Return to Blitz Basic 2 editor
End

*¥** Sub-routine
LABEL2:
NPrint "This is the sub-routine."
VWait 50
NPrint "(Returning to main program)"

76

4.Control Structures

ViWait 50

; *** Return to main program
Return

; *** Program flow cannot continue
End

POP

Mode(s): Amiga/Blitz
Statement: exit from a program loop
Syntax: Pop For/Gosub/If/Repeat/Select/While

On occasions it may be necessary to exit from a particular type of program loop in order to branch
program execution to a different part of the program. POP is used to exit from jumps (both conditional
and unconditional), structured tests and conditional and controlled loops:

Table 4.1 : Control structures which can be POPped

Control structure Pop?
GOSUB Y
IF...ENDIF Y
WHILE...WEND Y
REPEAT...UNTIL Y
FOR...TO...NEXT Y
SELECT...CASE...END SELECT Y

For example:

; *¥** Pop example

*** Filename - Pop!.bb2

*** Call sub-routine forever
Repeat

Gosub JOYSTICK
Forever

MOOSE :

NPrint "Pop has called the MOUSE sub-routine"
ViWait 50

; ¥** Return to Blitz Basic 2 editor

End

JOYSTICK:

NPrint "Press left mouse button"

; *¥** Exit sub-routine upon joystick event
If Joyb(@)=1 Then Pop Gosub : Goto MOOSE
Return

77

4.Control Structures

; *** Program flow cannot continue
End

4.2 Conditional jumps and structured tests

Often you will want to execute different parts of a program, depending on the outcome of an
expression. This is called a conditional jump, or structured test, depending upon the test format.

IF [THEN]

Mode(s): Amiga/Blitz
Statement: choose between alternative actions
Syntax: If EXPRESSION Then STATEMENTS

This command structure makes it possible to make one or more instructions operational only when a

logical condition if fulfilled. IF a condition is true THEN the following statements are executed. Here is
an example:

; *¥*¥* If...Then example
; *** Conditional test
; *** Filename - Iffy.bb2

NPrint "Input your age (in years):-"
A=Edit(40)

If A<40 Then Print "You are young!"

If A>=40 Then Print "You are over the hill!"
ViWait 100

; ¥** Return to Blitz Basic 2 editor
End

AND OR

Mode(s): Amiga/Blitz

Statement: qualify a condition

Syntax: If CONDITION1 AND CONDITION2 Then STATEMENT
Syntax 2: TIf CONDITION1 OR CONDITION2 Then STATEMENT

The logical AND operator can also be used to qualify a condition. If CONDITION1 is true, and
CONDITION?2 is true, then STATEMENT is executed.

The OR operator can be used in the same way. If CONDITIONT or CONDITION 2 is true, then
STATEMENT is executed.

Here is a working example:

78

4.Control Structures

*** AND...OR example
5 *** Filename - AND...OR.bb2

A=5

B=5

C=11

; ¥** A=B and C is >10

If A=B AND C>10 Then NPrint "True"
**¥* A=B, but C is >10

If A<B OR C>10 Then NPrint "Also True"
*** Wait for a mouse click

MouseWait

; *** Return to Blitz Basic 2 editor

End

NOT

Mode(s): Amiga/Blitz
Statement: negate logical expression
Syntax: n=NOT EXPRESSION

The NOT operator negates a logical expression. It is the only logical operation with one argument. Here
are some examples:

; *¥** NOT example
**¥* Filename - NOT.bb2

NPrint NOT False ; *** peturns -1
NPrint NOT True ; *** preturns ©
NPrint NOT © ; *** returns -1

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

5 ¥** NOT example 2
*** Filename - NOT2.bb2

; *¥*¥* If...Then structure
A=5

B=5

NPrint "A = ",A

NPrint "B = ",B

If A=B Then NPrint "A=B"

79

4.Control Structures

NPrint ""

*** NOT (negate) structure
A=5
B=10
NPrint "A = ",A
NPrint "B = ",B
If NOT A=B Then NPrint "A<>B"
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

ENDIF

Mode(s): Amiga/Blitz
Statement: terminate a structured test
Syntax: If STRUCTURED TEST

EndIf

However, the IF..THEN conditional jump has been superseded in most BASIC languages by the infinitely
more powerful IF..ELSE..ENDIF structured test. If the optional THEN command is omitted then the test
becomes a structured one and must be terminated with the ENDIF command. This allows you to
execute many lines of Blitz code depending on the outcome of a single condition:

; *¥*¥* If...EndIf example
¥¥* Structured test
**¥* Filename - EndIffy.bb2

NPrint "Input your age (in years):-"
; *¥** Input some numbers

A=Edit(40)
If A<40

Print "You are young!"

*Rx T+ A>40...

Else

Print "You are over the hill!"
EndIf
VWait 100

*** Return to Blitz Basic 2 editor
End

80

4.Control Structures

ELSE

Mode(s): Amiga/Blitz
Statement: qualify a condition
Syntax: If CONDITION Then STATEMENT Else STATEMENT2
Syntax 2: If CONDITION
LIST OF STATEMENTS
Else
LIST OF STATEMENTS
EndIf

ELSE is used in conjunction with IF and THEN (IF and ENDIF in a structured test) to qualify a condition.
The commands between IF and ELSE are executed when the logical condition following IF is true. Then
program execution continues with the next command in the program.

If the condition following IF is false then the commands after ELSE are executed instead. Here are some
examples:

; *¥** Else example 1
; ¥** Conditional test
; ¥** Filename - Elsel.bb2

; *** Generate a random integer

A=Int(Rnd(100))

NPrint A," is a random number"

; ¥** Make a decision

If A<50 Then NPrint A," is less than 50" Else Gosub GREAT
ViWait 100

; *¥** Return to Blitz Basic 2 editor

End

*** Sub-routine
GREAT:
NPrint A," is greater than 50"
Return

*** Else example2
; ¥** Structured test
*** Filename - Else2.bb2

A=Int(Rnd(100))
NPrint A," is a random number"

If A<50
NPrint A," is less than 50"
*k*x T+ A>50...
Else

Gosub GREAT

81

4.Control Structures

EndIf

VWait 100

; ¥** Return to Blitz Basic 2 editor
End

; ¥** Sub-routine

GREAT:

NPrint A," is greater than 50"
Return

TRUE

Mode(s): Amiga/Blitz
Statement: return logical true (-1)
Syntax: t=True

TRUE returns the logical true of a constant. This is represented by the number (-1). A value of either true
(-1) or false (0) is produced every time a conditional test is executed. Try this example:

*** True example
**¥* Filename - True.bb2

Screen 0,3+8, "Mawwage"
Window ©,0,20,640,200,0,"Twoo Wove",1,2
For LOOP=1 To 5
A=Int(Rnd(3))
B=Int(Rnd(3))
NPrint "A = ",A
NPrint "B = ",B
C=A<>B
*¥** Logical true
If C=True
NPrint "A<>B"
*** |ogical false
Else
NPrint "A=B"
EndIf
NPrint ""
VWait 20
Next LOOP
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

82

4.Control Structures

FALSE

Mode(s): Amiga/Blitz
Statement: return logical false (@)
Syntax: f=False

FALSE returns the logical false of a constant. This is represented by the number (0). A value of either
true (-1) or false (0) is produced every time a conditional test is executed. Example:

; *** False example
; ¥** Filename - False.bb2

Screen 0, 3+8, "Skween"
Window 0,0,20,640,200,%1000, "Whindoow",1,2
A$=Edit$(10)
B=Len(A$)
; ¥** Logical false
If B=False

NPrint "NO TEXT WAS ENTERED!"
; ¥** Logical true
Else

NPrint "Length = ",B," characters"
EndIf
; ¥** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

SELECT CASE END SELECT

Mode(s): Amiga/Blitz
Statement: hold the result of an expression
Syntax: Select EXPRESSION
Case 1
; ¥** Execute if expression
Case 2
; *** Execute if expression
End Select

n
=

1l
N

SELECT examines and stores the result of the specified expression.

The CASE statement is used following SELECT to execute a section of program code when the
expression specified by CASE is equivalent to the expression specified by SELECT.

END SELECT is used to terminate a SELECT...CASE control structure. For example:

83

4.Control Structures

*** Select example
; *** Filename - Select.bb2

For A=1 To 10
N=Int(Rnd(3))+1

Select N
*** Number one generated
Case 1
NPrint "One"
*** Number two generated
Case 2
NPrint "Two"
*** Number three generated
Case 3
NPrint "Three"
End Select
VWait 10
Next A
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
DEFAULT

Mode(s): Amiga/Blitz
Statement: execute if CASE not satisfied
Syntax: Default

If none of the CASE statements are satisfied then DEFAULT may be used to cause a section of program
code to be executed if none of the CASE statements were satisfied. Try the following example:

*** Default example
; *** Filename - Default.bb2

For A=1 To 25
N=Int(Rnd(10))+1

Select N

*** Number one generated
Case 1

NPrint "One"

*** Number two generated
Case 2

NPrint "Two"

*** Number three generated
Case 3

NPrint "Three"

84

4.Control Structures

*** Case not satisfied (N>3)
Default
NPrint "Number greater than 3!"
End Select
ViWait 10
Next A
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

ON

Mode(s): Amiga/Blitz

Statement: jump to a label on the result of an expression
Syntax: On EXPRESSION Goto LIST OF LABELS

Syntax 2: On EXPRESSION Gosub LIST OF LABELS

ON tells a program to branch, via either a GOTO or a GOSUB, to one of a number of program labels
depending upon the result of the expression. The program labels must be separated by commas.

If the expression results in one then the first program label will be branched to. If the expression results
in two then the second program label will be branched to and so on.

If the result of the expression is negative, or greater than the number of program labels, then program
execution will continue from the command following ON. Try the following example on (no pun
intended) for size:

¥¥* On example
*** Fjilename - On.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
; *** Branch to sub-routines in turn
For LOOP=1 To 3
On LOOP Gosub STARS,LINES,CIRCLES
ViWait 50
Next LOOP
; *** Return to Blitz Basic 2 editor
End

*** Draw 100 stars
STARS:
For A=1 To 100
Plot Rnd(320),Rnd(256),Rnd(30)+1
Next A
Return

85

4.Control Structures

; ¥** Draw 100 lines
LINES:
For B=1 To 100
Line Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(30)+1
Next B
Return

; ¥** Draw 100 circles
CIRCLES:
For C=1 To 100
Circle Rnd(320),Rnd(256),Rnd(10)+1,Rnd(30)+1
Next C
Return

4.3 Conditional loops

The conditional loop is one of the most powerful BASIC control structures. It is used to repeat a section
of code until the condition of the loop is satisfied.

WHILE WEND

Mode(s): Amiga/Blitz
Statement: repeat loop while condition is true

Syntax: While CONDITION
LIST OF STATEMENTS
Wend

The WHILE and WEND instructions are used to create a loop which is to be executed as long as a logical
condition is true. When a WHILE statement is encountered, its condition is checked and the loop is only
executed if the condition is true. When WEND is reached the program execution jumps back to WHILE
and the loop is repeated. Try the following examples:

**¥* While...Wend example ** Filename - While...Wend.bb2

NPrint "Counting to 100:"
ViWait 50

*** Repeat until A=100
While A<100

Let A+1

NPrint A
Wend
NPrint "Finished!"

*** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

86

4.Control Structures

*** While...Wend example 2
; ¥** Filename - While...Wend2.bb2

BLITZ
Mouse On
BitMap ©,320,256,3
Slice 0,44,3
Show ©
; *** Repeat until mouse button is pressed
While Joyb(@)=0
Line Rnd(320),Rnd(256),MouseX,MouseY,Rnd(5)+1
Wend
*** Return to Blitz Basic 2 editor
End

REPEAT UNTIL

Mode(s): Amiga/Blitz
Statement: repeat loop until condition is satisfied
Syntax: Repeat

LIST OF STATEMENTS

Until CONDITION

The instructions REPEAT and UNTIL are used to create a loop which is to be executed until a logical
condition exists. When the REPEAT statement is encountered in a program, the loop is executed. Then
the logical condition is checked and if is true then the loop is cancelled and program execution
continues after the UNTIL instruction. Both commands should occupy their own lines. Here are some
examples:

; *¥** Repeat...Until example
; *** Filename - Repeat...Until.bb2

BitMap ©,320,256,3
BLITZ
Slice 0,44,3
Show ©
*** Repeat loop until mouse button is pressed
Repeat
Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(6)+1
Until Joyb(©)>0
; *** Return to Blitz Basic 2 editor
End

87

4.Control Structures

; *** Repeat...Until example 2
; *** Filename - Repeat...Until2.bb2

PalRGB ©,1,15,15,15
BLITZ
Mouse On
BitMap ©,320,256,3
Slice 0,44,3
Show ©
Use Palette ©
; ¥** Plot a random starfield
For A=1 To 15
Plot Int(Rnd(320)),Int(Rnd(50)),Rnd(5)+2
Next A
For B=1 To 15
; ¥** Search for coloured stars
Repeat
X=Int(Rnd(320))
Y=Int(Rnd(50))
Until Joyb(@)>@ OR Point(X,Y)>1
; ¥** Change coloured star to white
Plot X,Y,1
; ¥** Loop back until all stars recoloured
Next B
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

4.4 Unconditional loops

Unconditional loops, like unconditional jumps, require no decision-making whatsoever. These loops are
used to repeat a section of code forever, hence the following Blitz Basic keyword.

FOREVER

Mode(s): Amiga/Blitz
Statement: cause a Repeat loop to repeat infinitely
Syntax: Repeat

LIST OF STATEMENTS

Forever

FOREVER is used instead of UNTIL in a REPEAT..UNTIL loop to create an endless loop. The program
executes the commands between REPEAT and UNTIL and branches back to REPEAT when UNTIL is
reached. Both commands should occupy their own lines, as in the following example:

88

4.Control Structures

; *** Repeat...Forever example
; *** Filename - Repeat...Forever.bb2

; *** Repeat loop forever
Repeat
NPrint "This loop will never end. Don't run this example!"
Forever
; *¥** This command is never reached
End

4.5 Controlled loops

Often you need to do the same thing several times in a program. Although you can repeat part of a
program using GOTO, a much better way is to repeat the same lines several times using the
FOR..TO..NEXT structure. This is known as a controlled loop as the loop is controlled by the
programmer, rather than the user.

FOR TO NEXT

Mode(s): Amiga/Blitz
Statement: repeat loop a specific number of times
Syntax: For INDEX=FIRST_NUMBER To LAST_NUMBER [Step INC]

The FOR..TO..NEXT loop repeats a list of instructions a specified number of times. INDEX counts the
number of times the loop is repeated and is increased by one each time the loop repeats. The number
that INDEX is increased by (or decreased by) can be altered by including the Step INC parameter (see
later). At the start of the loop, the INDEX counter is loaded with the FIRST_NUMBER value and is
increased each program loop until it reaches the LAST_NUMBER value. Here is an example:

5 *** For...To...Next example
; *** Filename - For...To...Next.bb2

BitMap ©,320,256,5
BLITZ
Slice 0,44,5
Show ©
BitMapOutput ©
NPrint "200 rectangles!"
VWait 100
Cls
; ¥** Simple For...To...Next loop (200 loops)
For A=1 To 200
Boxf Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(30)+1
Next A
ViWait 50
Cls

89

4.Control Structures

NPrint "1000 circles!"
ViWait 100
Cls
***% A larger For...To...Next loop (1000 loops)
For B=1 To 1000
Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(30)+1
Next B
ViWait 50
*¥** Return to Blitz Basic 2 editor
End

If the optional Step INC parameter is included then INC will be added to the counter after each loop
instead of one (the default). If the value for INC is negative then the entire loop will be performed in
reverse. For example:

*** For..To...Next example 2
; ¥** Filename - For...To...Next2.bb2

BLITZ
BitMap 9,320,256,1
BitMapOutput ©
Slice 0,44,1
Show ©
Locate 0,0
*¥** Step 2 loop
For A=1 To 10 Step 2
NPrint A
Next A
ViWait 50
Locate 0,0
; *** Decreasing loop
For B=10 To 1 Step -1
NPrint B
Next B
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

4.6 Interrupt handling

Interrupts are hardware signals which cause the Amiga's processor to stop what it is doing (usually the
execution of the main program) and execute a pre-defined piece of code called an interrupt routine, or
interrupt handler. Once the interrupt handler has finished executing, the main program is restarted as if
nothing has happened.

There are 14 different types of interrupt on the Amiga:

90

4.Control Structures

Table 4.2 : Blitz Basic Interrupts

Interrupt Cause of Interrupt

0 Serial transmit buffer empty

1 Disk block read/written

2 Software interrupt

3 CIA ports interrupt

4 Copper interrupt

5 Vertical blank

6 Blitter finished

7 Audio channel @ pointer/length fetched
8 Audio channel 1 pointer/length fetched
9 Audio channel 2 pointer/length fetched
10 Audio channel 3 pointer/length fetched
11 Serial receive buffer full

12 Floppy disk sync

13 External interrupt

Interrupt handlers should never access string variables or literal strings. In Amiga mode no Blitter,
Intuition or file access command may be executed by interrupt handlers.

The most useful interrupt is the vertical blank interrupt (number 5). This interrupt occurs every time a
vertical blank period has elapsed (about every sixtieth of a second). Consequently, any code defined as
a vertical blank interrupt is executed every sixtieth of a second. Vertical blank interrupt handlers must
never take longer than one sixtieth of a second to execute, otherwise you are asking for trouble!

SETINT

Mode(s): Amiga/Blitz
Statement: declare code as interrupt code
Syntax: SetInt TYPE

END SETINT

Mode(s): Amiga/Blitz
Statement: end interrupt code
Syntax: End SetInt

The SETINT statement is used to define interrupt code. Any code which appears within an interrupt
definition is executed every time the specified interrupt occurs. END SETINT is used to terminate an
interrupt definition.

In the first example | am using the vertical blank interrupt to modify a colour register during vertical
blank periods, and in the second the same interrupt is used to flash the Amiga's power light:

91

4.Control Structures

**% SetInt example 1
;5 *** Filename - SetIntl.bb2

BLITZ

BitMap ©,320,256,3
Slice 0,44,3

Show ©

; *** Create background task
SetInt 5

Let A+l

Poke.w $dff180,A
End SetInt

; ¥** Main program
For B=1 To 3000
Circlef Rnd(320),Rnd(200)+50,Rnd(20)+10,Rnd(5)+1
Next B
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

; *¥** SetInt example 2
*** Filename - SetInt2.bb2

BLITZ
BitMap @,320,256,3
BitMapOutput ©
Slice 0,44,3
Show @
D=1
; *** Create background task
SetInt 5
*** Toggle power light rapidly
If D=0
Filter On
Else
Filter Off
EndIf
D=1-D
End SetInt

; ¥** Main program

For B=1 To 3000
Colour Rnd(5)+1
Locate Rnd(40),Rnd(20)+10
Print "Hello"

92

4.Control Structures

Next B
; ¥** Wait for a mouse click
MouselWait

*¥** Return to Blitz Basic 2 editor
End

CLRINT

Mode(s): Amiga/Blitz
Statement: remove interrupt handler
Syntax: ClrInt TYPE

CLRINT is used to remove an interrupt handler. The TYPE parameter specifies the interrupt type. For
example:

*** ClrInt example
; *** Filename - ClrInt.bb2

BLITZ
BitMap ©,320,256,3
BitMapOutput ©
Slice 0,44,3
Show ©
D=1

*** Create background task
SetInt 5

Cls Rnd(5)+1
End SetInt
; ¥** Wait for a mouse click
MouseWait

*** Remove background task
ClriInt 5

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

4.7 Error handling

Normally any runtime errors which may occur are reported by Blitz Basic's direct mode. However, it is
often useful to trap these errors before they are reported by Blitz; this is where custom error handling
come in. Custom error handlers are often used during the development stage, and removed once all of
the bugs - or "undocumented features", as some programmers refer to them - have been ironed out.

93

4.Control Structures

SETERR

Mode(s): Amiga/Blitz
Statement: declare error handler
Syntax: SetErr

END SETERR

Mode(s): Amiga/Blitz
Statement: end error handling definition
Syntax: End SetErr

The SETERR statement defines a custom error handler. Any program code which appears inside a
custom error handler will be executed when any Blitz Basic runtime errors occur. Error handlers should
be terminated with the END SETERR statement.

This will work fine until the program tries to blit a shape and it is discovered that there are no shape
objects in memory:

*** SetErr example 1
*** Fjlename - SetErrl.bb2

*** Create error handler
SetErr
NPrint "Error!!!"
NPrint "Press Left Mouse Button"
**¥* Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
End SetErr
*** There is no object to blit!
Blit 0,100,100
; ¥** These commands are never reached
MouseWait
End

The second error handler generates an error when the program tries to access an array which has too
few dimensions:

; *¥** SetErr example 2
*** Filename - SetErr2.bb2

; ¥** Create error handler
SetErr

94

4.Control Structures

NPrint "Error!!!"
NPrint "Press Left Mouse Button"
*** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End
End SetErr
*** A$ has too few dimensions!
Dim A$(3)
*** Generate dimension overflow error
For B=1 To 4
A$(B)="Blitz Basic "+Str$(B)
NPrint A$(B)
Next B
*** These commands are never reached
MouseWait
End

CLRERR

Mode(s): Amiga/Blitz
Statement: remove error handler
Syntax: ClrErr

This statement is used to remove a custom error handler. For example:

*** ClrErr example ** Filename - ClrErr.bb2
; ¥** Create custom error handler

SetErr

NPrint "This error handler will never work"
End SetErr

*** Remove custom error handler
ClrErr

*** Generate error
Blit 0,100,100

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

ERRFAIL

Mode(s): Amiga/Blitz
Statement: cause a normal error within error handler
Syntax: ErrFail

95

4.Control Structures

The ERRFAIL statement is used to temporarily suspend the custom error handler (i.e. the error occurs as
normal). Error reporting is then returned to direct mode. Here is an example:

*** ErrFail example
*** Filename - ErrFail.bb2

*** Define error handler
SetErr
NPrint "Error!!!"
NPrint ""
NPrint "Press left mouse button to print"
NPrint "actual error in direct mode."
*** Wait for a mouse click
MouseWait
*** Suspend error handler
ErrFail
End SetErr
*** Create error
Dim A$(3)
For B=1 To 4
A$(B)="Blitz Basic "+Str$(B)
NPrint A$(B)
Next B
*** These commands are never reached
MouseWait
End

4.8 Procedures

A procedure is a specially defined module of code that can be called from your main program. Blitz
Basic 2 supports two types of procedure, the function-type procedure and the statement-type
procedure. A procedure which does not return a value is known as a statement and a procedure which
does return a value is known as a function. Both are able to use their own local variables and may gain
access to global variables through the use of the SHARED statement.

You may pass up to six variables to a procedure. These variables must be of primitive type. NewType
variables may not be used.

4.8.1 Statement-type procedures

STATEMENT

Mode(s): Amiga/Blitz

Statement: create a statement-type procedure

Syntax: Statement NAME{}

Syntax 2: Statement NAME{LIST OF OPTIONAL PARAMETERS}

96

4.Control Structures

END STATEMENT

Mode(s): Amiga/Blitz
Statement: end a statement-type procedure
Syntax: End Statement

A statement-type procedure is created by defining the statement with the STATEMENT statement. If the
optional list of parameters are included then parameters may be passed to the procedure. The
procedure must be closed with the END STATEMENT statement. Procedures must be called up as
follows:

NAME { }

or:

NAME{LIST OF OPTIONAL PARAMETERS}

Why not try the following examples:

; *¥** Statement-type procedure
; ¥** Filename - Statement.bb2

; *** Define procedure
Statement AGE{A}
NPrint "You are ",A*12," months old."
End Statement
NPrint "Please input your age in years:"
A=Edit(20)
; *¥** Call procedure
AGE{A}
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

; *** Statement-type procedure 2
; ¥** Filename - Statement2.bb2

; ¥** Define procedure

Statement UPPER{A$}
C$=UCASE$(Mid$(A$,1,1))

97

4.Control Structures

B$=Right$(A$,Len(A$)-1)
D$=C$+B$
NPrint D$

End Statement

*¥** Tnput name
NPrint "Enter your first name in lower case:-"
A$=Edit$(20)
; *** Call procedure

UPPER{A%$}

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

STATEMENT RETURN

Mode(s): Amiga/Blitz
Statement: exit a statement-type procedure immediately
Syntax: Statement Return

STATEMENT RETURN is used to exit from a statement-type procedure before the end of the procedure.
Here is an example which exits from the procedure structure once the value (0) is generated:

; *** Statement Return
*¥** Filename - Statement_Return.bb2

*** Define procedure
Statement RANDOM{A}
B=Int(Rnd(A))
If B=0 Then Statement Return
NPrint "Random number is: ",B
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
End Statement

;5 *¥** Input maximum number

NPrint "Input maximum random number:"
A=Edit(20)

; *** Call procedure

RANDOM{A}

; *¥** These commands are never reached
MouseWait

End

98

4.Control Structures

4.8.2 Function-type procedures

FUNCTION

Mode(s): Amiga/Blitz

Statement: create a function-type procedure

Syntax: Function [.TYPE] NAME{}

Syntax 2: Function [.TYPE] NAME{LIST OF OPTIONAL PARAMETERS}

END FUNCTION

Mode(s): Amiga/Blitz
Statement: end a function-type procedure
Syntax: End Function

FUNCTION RETURN

Mode(s): Amiga/Blitz
Statement: exit a function-type procedure immediately
Syntax: Function Return EXPRESSION

The function-type procedure returns a value. It is created by defining the function with the FUNCTION
statement. If the optional list of parameters are included then parameters may be passed to the
procedure. The procedure must be closed with the END FUNCTION statement.

The optional TYPE parameter may be used to determine what type of result is returned by the function
using FUNCTION RETURN. It must be one of Blitz Basic's six primitive variable types:

Table 4.3 : Blitz Basic types

Type Suffix Example

Byte b Function.b
Word w Function.w
Long .1 Function.l
Quick q Function.q
Float f Function.f
String $ Function$

If TYPE is omitted then the current default type will be used (default is quick).

FUNCTION RETURN is used within function-type procedures to return the result of the function. Try the
following examples:

99

4.Control Structures

*** Function-type procedure
; ¥** Filename - Function.bb2

; *** Define procedure
Function$ HEXBIN{A}

Function Return Hex$(A)+" "+Bin$(A)
End Function

; ¥** Call procedure 10 times
For A=1 To 10
NPrint HEXBIN{A}
Next A
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

; *** Function-type procedure 2
; *** Filename - Function2.bb2

; ¥** Define procedure
Function$ BACKWARDS{A$}
A=Len(A$)
For LOOP=1 To A
B$=B$+Mid$ (A$,A,1)
Let A-1
Next LOOP
Function Return UCase$(B$)
End Function

; ¥** Input name

NPrint "Enter your name :-
A$=Edit$(20)

; *** Call procedure
NPrint BACKWARDS{A$%}

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

100

4.Control Structures

4.8.3 Global variables

SHARED

Mode(s): Amiga/Blitz
Statement: define a list of global variables
Syntax: Shared LIST OF VARIABLES

Normally, variables inside procedures cannot be written to or read from the main program. We call
these variables "local variables" as they can only be used by the procedure itself. All the variables
outside of procedures are known as "global variables" - they can be accessed from anywhere.

The SHARED statement takes a list of local variables inside a procedure definition and converts them to
global variables, which can be accessed by the main program. This offers an easy way of transferring
large amounts of data between procedures. Here is an example:

*** Shared example
*** Filename - Shared.bb2

SPEED=100
*** Define procedure
Statement AGE{}
NPrint SPEED ; *** Prints "@"
SHARED SPEED
NPrint SPEED ; *** Ppints "100"
End Statement

*** Call procedure

AGE{}

*¥** Wait for a mouse click
MouseWait

*¥** Return to Blitz Basic 2 editor
End

4.8.4 Some useful procedures

Experienced programmers will find that, over the years, they build up a large collection of useful
programs, routines and procedures. For the more inexperienced among us, here are three really useful
(depending on your point of view) procedures that can be easily incorporated into your own creations,
or used independently

Our first procedure centres a text string on the x-axis. It works by dividing a string in two and
positioning one half left of the centre of the display, and the other half right of the centre. At present
the procedure only works on low-resolution BitMaps. Try improving it so that it automatically centres a
string on any resolution screen or BitMap

101

4.Control Structures

*** Useful Procedure 1
; ¥** Filename - Procl.bb2

BLITZ

BitMap ©,320,256,3
Slice 0,44,3

Show ©
BitMapOutput ©

; *** Define procedure
Statement CENTRE{A$}
*** Half screen width and text
X=40/2-Len(A%$)/2
Locate X,10
Colour 4
Print A$
End Statement

; *** Call procedure
A$="Blitz Basic centred text"

CENTRE{A$}
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

Our second procedure generates a specified number of random numbers. "But what's wrong with the
RND function®, | hear you cry! Well, if you were to generate a series of random numbers using RND
then the chances are that the same number will come up more than once. This routine can be used to
generate any amount of random numbers, and what's more, they will never repeat:

*** Useful Procedure 2
**¥* EFjilename - Proc2.bb2

*** Number of random numbers
MAX=10

*** Array to hold numbers
Dim RANDOM(MAX)

*** Define procedure
Statement RANDOM{MAX}
SHARED RANDOM()
*** Generate random numbers
For A=1 To MAX
RANDOM(A)=A
Next A
¥¥* Mix them up
Repeat

102

4.Control Structures

Repeat
B=Rnd (MAX)+1
Until B>0
Exchange RANDOM(B), RANDOM(MAX)
Let C+1
Until C=MAX
End Statement

; *** Call procedure

RANDOM{MAX}

For T=1 To MAX
NPrint RANDOM(T)

Next T
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

Our third and final procedure is used to solve general quadratic equations. It is primarily of use to A-
Level Mathematics students (who will understand what a general quadratic equation is!). Simply enter
the appropriate values for A, B and C and the procedure will do the rest. Try adding an error generator
for quadratic equations which cannot be solved:

; *¥** Useful Procedure 3
*** Filename - Proc3.bb2

Statement QUADRATIC{A,B,C}
*** Negate B
B=NOT B
; *¥** Maths jiggery pokery
D=Sqr((B*B) - (4*A*C))
E=(B+D)/(2*A)
F=(B-D)/(2*A)
*** Qutput answer
NPrint "X = ",E
NPrint "or = ",F
End Statement

*** Tnput appropriate values
NPrint "Enter A:"
A=Edit(2)
NPrint "Enter B:"
B=Edit(2)
NPrint "Enter C:"
C=Edit(2)
NPrint ""

*¥** Call procedure
QUADRATIC{A,B,C}

*** Wait for a mouse click
MouseWait

103

4.Control Structures

; ¥** Return to Blitz Basic 2 editor
End

4.9 End-of-Chapter summary

There are five control structures in Blitz Basic: unconditional jumps (GOTO and GOSUB), conditional
jumps and structured tests (IF...ENDIF & SELECT...CASE..END SELECT), conditional loops (WHILE..WEND
& REPEAT...UNTIL), unconditional loops (REPEAT...FOREVER), and controlled loops (FOR...TO...NEXT).

Unconditional jumps are those which require no decision-making whatsoever - they simply allow
branching from one part of a program to another.

Conditional jumps and structured tests are used to execute different parts of a program, depending on
the outcome of an expression.

The conditional loop is used to repeat a section of code until the condition of the loop is satisfied.

Unconditional loops, like unconditional jumps, require no decision-making whatsoever. These loops are
used to repeat a section of code forever.

Controlled loops are used to execute the same program lines several times in a program.

Interrupt handlers are defined using SETINT and END SETINT. Interrupts are hardware signals which
cause the Amiga's processor to stop what it is doing (usually the execution of the main program) and
execute a pre-defined piece of code called an interrupt handler. Vertical blank interrupts are executed
every sixtieth of a second.

Runtime errors can be trapped using custom error handlers. These are created with the SETERR and
END SETERR statements. Error handlers are suspended with ERRFAIL.

Blitz Basic 2 supports two types of procedure: functions and statements. Procedures which do not
return values are known as statements. Procedures which do return values are known as functions. Up
to six values can be passed to Blitz Basic 2 procedures.

GOTOs and GOSUBS from inside procedures to labels outside of procedure definitions are illegal.
Variables used in procedure definitions are initialised with every call of the procedure.

Function-type procedures can return any primitive type using the FUNCTION RETURN statement.
Local variables are those contained within procedure definitions and may only be used by procedures.

Procedures may gain access to global variables through the use of the SHARED statement.

104

Chapter 5 : Input/Output

This chapter will show you how to output text onto a screen or BitMap. It will aid you in the reading of
the keyboard and the joystick and mice ports, and teach you the basics of file access.

5.1 Text

Virtually all computer programs use text. Text can be used to prompt the user for input, or to display a
congratulatory message or high-score table. Blitz Basic can be used to create anything from simple
messages to fully-blown text adventures!

5.1.1 Printing on screen

PRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: Print EXPRESSION

The PRINT statement is used to output numeric variables and strings to the current output channel.
PRINT followed by a string variable or expression displays the string or strings they represent (strings
must be enclosed in quotation marks). Followed by a numeric expression, PRINT displays the
expression's value. Followed by a null string (""), PRINT displays a blank line. Here are some examples
which all produce the same output:

;5 ¥** Print examples
; ¥** Filename - Print.bb2

Print "Blitz Basic is the best!"
Print "Blitz Basic"+" is the best!"”
Print "Blitz Basic"," is the best!"”
; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

NPRINT

Mode(s): Amiga/Blitz
Statement: print items on screen
Syntax: NPrint EXPRESSION

NPRINT is used to output numeric variables and strings to the current output channel. NPRINT followed
by a string variable or expression displays the string or strings they represent (strings must be enclosed

105

5.Input/Output

in quotation marks). Followed by a numeric expression, NPRINT displays the expression's value.
Followed by a null string ("*), NPRINT displays a blank line.

Unlike PRINT, NPRINT automatically outputs a newline character. For example:

; *¥** NPrint example
; ¥** Filename - NPrint.bb2

Print "Going "
Print "down"
NPrint ""
NPrint ""
NPrint "Going"
NPrint "Down"
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

BITMAPOUTPUT

Mode(s): Amiga/Blitz
Statement: direct PRINT commands to a BitMap
Syntax: BitMapOutput BITMAP#

The BITMAPOUTPUT statement is used to direct all future PRINT or NPRINT statements to a BitMap.
Fonts used for BitMap output must be eight-by-eight non-proportional fonts (see later). Here is an
example:

; *¥** BitMapOutput example
; *** Filename - BitMapOutput.bb2

; *** Pop into Blitz mode
BLITZ
; *** Open BitMap to display graphics
BitMap ©,320,256,3
*** Direct PRINT statements to BitMap
BitMapOutput ©
*** Open a Slice and display BitMap
Slice 0,44,3
Show ©
*** Qutput some text
For A=1 To 50
Locate Rnd(40),Rnd(25)
Colour Rnd(5)+1
Print "BitMap Output"
Next A
; ¥** Wait for a mouse click

106

5.Input/Output

MouseWait
; ¥** Return to Blitz Basic 2 editor
End

DEFAULTOUTPUT

Mode(s): Amiga/Blitz
Statement: send PRINT statements to the default CLI window
Syntax: DefaultOutput

This statement causes all future PRINT and NPRINT statements to send their output to the default CLI
window. This is the CLI window the program was run from. For example:

; *** DefaultOutput example
; *** Filename - DefaultOutput.bb2

; *** Open an Intuition screen and window
Screen 0,0,100,320,200,3,0,"A Screen",1,2
Window ©,10,40,200,50,0,"A Window",1,2

; *¥** Output text to window

Print "hello from window"

; *¥** Direct PRINT statement to CLI window
DefaultOutput

Print "Hello from CLI window"

; ¥** Wait for a mouse click

MouseWait

; *** Return to Blitz Basic 2 editor

End

5.1.2 Formating numeric strings

FORMAT

Mode(s): Amiga/Blitz
Statement: control output of numeric values
Syntax: Format STRING$

FORMAT is used to control the output of numeric values with PRINT and NPRINT. STRINGS is a string
expression, of up to 80 characters in length, containing formatting information:

107

5.Input/Output

Table 5.1 : Text formatting

Character Description

0 Replace missing digits with zeros
Insert decimal point
, Insert commas every 3 digits to the left
+ Insert sign of value
- Insert sign of value, if negative
Replace missing digits with spaces

Here is an example:

; ¥** Amiga Format
; ¥** Filename - Format.bb2

Format "#i##.00"

NPrint 156 ; *** Returns "156.00"

Format "+#"

NPrint 5 ; *** Returns "+5"

Format ", it #HH"

NPrint 390000000 ; *** Returns "390,000,000"
; ¥** Wait for a mouse click

MouselWait

; ¥** Return to Blitz Basic 2 editor

End

5.1.3 Changing the text style

LOADBLITZFONT

Mode(s): Amiga
Statement: load a new font for BitMap output
Syntax: LoadBlitzFont FONT#,"FILENAME.FONT"

The LOADBLITZFONT statement creates a blitzfont object. Blitzfonts are used in the rendering of text to
BitMaps only. The default font is the ROM-resident topaz font, however this can be replaced with the
blitzfont of your choice. The "FILENAME.FONT" parameter specifies the name of the font to load, which
must be located in the fonts directory of the disk.

LOADBLITZFONT can only be used with eight-by-eight non-proportional fonts. Here is an example:

108

5.Input/Output

*** LoadBlitzFont example
; ¥** Filename - LoadBlitzFont.bb2

*** Joad a BlitzFont into memory
LoadBlitzFont ©,"FILENAME.FONT"

*** Wait for disk access to finish
VWait 20
BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
; *** Direct NPRINT statement to BitMap
BitMapOutput ©
Locate 0,5
Colour 4
NPrint "THE QUICK BROWN FOX JUMPED ETC."
; ¥** Wait for a mouse click
MouselWait
; *¥** Return to Blitz Basic 2 editor
End

USEBLITZFONT

Mode(s): Amiga/Blitz
Statement: select current font
Syntax: UseBlitzFont FONT#

If there is more than one blitzfont in memory then USEBLITZFONT provides an easy method for
switching between them. FONT# is the number of the blitzfont to use. For example:

*** Use BlitzFont example
; *¥** Filename - Use BlitzFont.bb2

; ¥** Load two BlitzFonts into memory
LoadBlitzFont ©,"FILENAME.FONT"
LoadBlitzFont 1,"FILENAME2.FONT"
; ¥** Wait for disk access to finish
ViWait 20
BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
BitMapOutput ©
Locate 0,5
Colour 4
*** Fipst BlitzFont
Use BlitzFont ©

109

5.Input/Output

NPrint "THE QUICK BROWN FOX JUMPED ETC."
Colour 2
*** Second BlitzFont
Use BlitzFont 1
NPrint "OVER THE LAZY DOG..."
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

FREEBLITZFONT

Mode(s): Amiga/Blitz
Statement: erase a font from memory
Syntax: FreeBlitzFont FONT#

FREEBLITZFONT erases a specified blitzfont from memory. This frees any memory previously occupied
by the font. Here's an example:

*** FreeBlitzFont example
*** Fjilename - FreeBlitzFont.bb2

*** Load a BlitzFont into memory
LoadBlitzFont ©,"FILENAME.FONT"
*** Wait for disk access to finish
ViWait 20
BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
BitMapOutput ©
NPrint "THE QUICK BROWN FOX JUMPED ETC."
*** Remove BlitzFont from memory
FreeBlitzFont ©
NPrint "THE SLOW RED SLUG DUCKED ETC."
*¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

5.1.4 Setting the text colour

Even if the output of your programs consists just of PRINT or NPRINT statements, there is no reason
why they cannot be arranged on the screen in an interesting, clear and attractive way. Use of colour
within PRINT statements from time to time can enhance the message and improve its legibility. Random
colour changes, for example, can be extremely effective.

110

5.Input/Output

COLOUR

Mode(s): Amiga/Blitz
Statement: set the colour of text
Syntax: Colour FOREGROUND[,BACKGROUND]

The COLOUR statement is used to set the colour used to render text to BitMaps. FOREGROUND is the
colour of the text and BACKGROUND is the colour of the text background. Here are a couple of
examples which illustrate the use of COLOUR in both Blitz and Amiga mode:

**%% Colour example 1
; *** Filename - Colourl.bb2

BLITZ
; *** Open a Blitz mode display
BitMap ©,320,256,5
Slice 0,44,5
Show ©

*** Direct NPRINT statements to BitMap
BitMapOutput ©
For A=1 To 30

*** Select a random colour
Colour Rnd(30)+1
NPrint "All the colours of the rainbow(and some)"

Next A

*** Wait for a mouse click
MouselWait
; *** Return to Blitz Basic 2 editor
End

; *¥** Colour example 2
*** Filename - Colour2.bb2

; ¥** Open an Intuition display
Screen 0,5,"My screen"
ScreensBitMap 0,0

*** Direct NPRINT statements to BitMap
BitMapOutput ©
Locate 0,4
For B=1 To 20

*** Select a random colour

Colour Rnd(30)+1

NPrint "A million colours on an Intuition screen"
Next B

*** Wait for a mouse click
MouseWait

111

5.Input/Output

**¥* Return to Blitz Basic 2 editor
End

5.1.5 The text cursor

The position of print output on the screen can also be important, and the LOCATE statement makes it
easy to place your information wherever you want it.

LOCATE

Mode(s): Amiga/Blitz
Statement: position the text cursor
Syntax: Locate X,Y

LOCATE positions the text cursor on the current BitMap. The X parameter specifies the horizontal
position (rounded down to a multiple of eight) and the Y parameter specifies the vertical position (not
rounded). LOCATE must follow a BITMAPOUTPUT statement. For example:

; ¥** A nice location
*** Filename - Locate.bb2

BLITZ
BitMap ©0,640,256,3
Slice 0,44,3+8
Show ©
BitMapOutput ©
Locate 0,0
Colour Int(Rnd(6)+1)
NPrint "Top left"
Locate 36,12
Colour 5
NPrint "Middle"
Locate 67,30
Colour Int(Rnd(6)+1)
NPrint "Bottom right"
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

CURSX

Mode(s): Amiga/Blitz
Function: return the horizontal position of the text cursor
Syntax: x=CursX

112

5.Input/Output

The CURSX statement returns the current horizontal character position of the text cursor. CURSX must
follow a BITMAPOUTPUT statement. For example:

*¥** CursX example
; ¥** Filename - CursX.bb2

BLITZ
; ¥** Open a Blitz mode display
BitMap ©0,640,256,3
Slice 0,44,3+8
Show ©
BitMapOutput ©
For A=1 To 5
*** Randomly locate cursor
Locate Int(Rnd(60)),Int(Rnd(30))
Colour 2
Print ""
*** Return cursor location
X=CursX
Locate 0,0
Colour 4
NPrint "X = ",X
VWait 100
Cls
Next A
*** Return to Blitz Basic 2 editor
End

CURSY

Mode(s): Amiga/Blitz
Function: return the vertical position of the text cursor
Syntax: y=CursY

The CURSY statement returns the current vertical character position of the text cursor. CURSY must
follow a BITMAPOUTPUT statement. Here is an example:

; *¥** CursX/Y example
**¥* Fjilename - CursY.bb2

BLITZ

; *** Open a Blitz mode display
BitMap ©0,640,256,3

Slice 9,44,3+8

Show @

BitMapOutput ©

For A=1 To 5

113

5.Input/Output

; *** Randomly locate cursor
Locate Int(Rnd(60)),Int(Rnd(39))
Colour 2
Print "Hello"
; ¥** Return cursor location
X=CursX
Y=CursY
Locate 0,0
Colour 4
NPrint "Hello X
NPrint "Hello Y =
VWait 100
Cls
Next A
; *** Return to Blitz Basic 2 editor
End

o
< X

CURSOR

Mode(s): Amiga
Statement: set the thickness of the text cursor
Syntax: Cursor THICKNESS

The CURSOR statement is used to set the thickness of the text cursor. If THICKNESS is negative then a
block cursor will be used, otherwise an underline cursor, THICKNESS pixels high will be used. Try the
following example:

; ¥** Cursor thickness
; ¥** Filename - Cursor.bb2

Screen 0,3+8,"My screen"

Window ©0,0,20,320,200,%$1000, "Cursors",0,1
NPrint "This is a block cursor:"
A$=Edit$(10)

Cursor 1

NPrint "This is an underlined one:"
A$=Edit$(10)

; ¥** Return to Blitz Basic 2 editor

End

5.2 The Keyboard

Input is a simple term which means the feeding of information into the computer where it is processed.
Such processing may be addition and subtraction of numbers or storing information such as text. On
the Amiga information can be entered using the keyboard. This section covers the commands which
can be used to read the Amiga's 96 (I counted every one of them!) key keyboard.

114

5.Input/Output

5.2.1 Reading the keyboard

BLITZKEYS

Mode(s): Blitz
Statement: toggle Blitz mode keyboard reading
Syntax: BlitzKeys On

The BLITZKEYS statement is used to toggle Blitz mode keyboard reading (note that BlitzKeys Off is no
longer supported by Blitz Basic 2). If keyboard reading is enabled then the keyboard can be read in Blitz
mode. For example:

; ¥** BlitzKeys example
; *** Filename - BlitzKeys.bb2

BLITZ
; *** Open a Blitz mode display
BitMap ©,320,256,3
BitMapOutput ©
Slice 0,44,3
Show ©
; *** Enable Blitz mode keyboard reading
BlitzKeys On
NPrint "Type some rubbish..."
; *¥** Input some text
While Joyb(@)=0
Print Inkey$
Wend
; ¥** Return to Blitz Basic 2 editor
End

Note that the following commands can only work in Blitz mode if Blitz mode keyboard reading is
enabled, as in the above example.

BLITZREPEAT

Mode(s): Blitz
Statement: vary Blitz mode key repeat delays
Syntax: BlitzRepeat DELAY,SPEED

The BLITZREPEAT statement is no longer supported by Blitz Basic 2. As such there is no example.

115

5.Input/Output

INKEY$

Mode(s): Amiga/Blitz
Function: check for a key-press
Syntax: i$=Inkey$[(CHARACTERS)]

This function is used to detect the pressing of keys on the keyboard. INKEY$ requires no arguement
and is generally used to assign a character to a string variable or to test for a particular character. If no
key is being pressed, then INKEY$ returns a null string (**). Note that INKEY$ distinquishes between
capital and lower-case letters. If the optional CHARACTERS parameter is included then more than one
character (the default) may be collected. For example:

; *** Inkey$ example
; *** Filename - Inkey$.bb2

Screen 0,3+8,"Screen"
; *** Open window to output text
Window ©,0,20,320,200,%$1000,"My word, another window",1,2
NPrint "Type some rubbish..."
Repeat
; *** Wait for a key-press
WaitEvent
Print Inkey$
Until Joyb(©)>0
; *¥** Return to Blitz Basic 2 editor
End

RAWSTATUS

Mode(s): Blitz
Function: test for a specific key-press
Syntax: k=RawStatus (RAW_CODE)

Use this function to determine whether or not a specific key is being pressed. RAW_CODE is the raw
code of the key to be tested. If the key is being pressed then a value of (-1) will be returned, otherwise
(0) will be returned. For example:

; *** RawStatus example
; *** Filename - RawStatus.bb2

BLITZ

; *** Open a Blitz mode display
BitMap ©,320,256,3

BitMapOutput ©

116

5.Input/Output

Slice 0,44,3
Show ©
*** Enable Blitz mode keyboard reading
BlitzKeys On
While Joyb(@)=0
Locate 0,1
Print "Del key is
*** Test status of DEL key
If RawStatus(70)
Print "down"

Else
Print "up "
EndIf
Wend
*** Return to Blitz Basic 2 editor
End
EDITS$

Mode(s): Amiga/Blitz
Function: input a text string
Syntax: e$=Edit$([DEFAULT, JCHARACTERS)

EDIT$ enables text strings to be entered during the execution of a program, with or without an input
cursor (DEFAULT). The cursor is always positioned at the last cursor position. CHARACTERS specifies the
number of characters that can be inputed with EDIT$. For example:

If the EDIT$ function follows a WINDOWINPUT command then EDIT$ will input
from and output to the current window, whereas a preceding FILEINPUT
command will cause EDIT$ to receive its input from a file.

For example:

; ¥** Edit$ example 1
*** Filename - Edit$1.bb2

; *** Open an Intuition display

Screen 0,3+8,"A Screen"

Window ©,0,20,200,200,$1000, "Window",1,0
NPrint "Enter your first name..."

; *** Input some text (10 characters max)
A$=Edit$(10)

NPrint "Hello ",A$%

; ¥** Wait for a mouse click

MouseWait

117

5.Input/Output

**¥* Return to Blitz Basic 2 editor
End

*** Edit$ example 2
**%*% Filename - Edit$2.bb2

*** Open an Intuition display
Screen 0,3+8,"Another Screen"
Window ©,0,20,200,200,$1000, "Another Window",1,0
NPrint "Enter your first name..."
; *** Input some text (with default prompt)
A$=Edit$("Default name",12)
NPrint "Hello ",A$%
*** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

EDIT

Mode(s): Amiga/Blitz
Function: input a numeric value
Syntax: e=Edit([DEFAULT,]JCHARACTERS)

EDIT enables numbers to be entered during the execution of a program, with or without an input cursor
(DEFAULT). The cursor is always positioned at the last cursor position. CHARACTERS specifies the
number of characters that can be inputed with EDIT. For example:

If the EDIT function follows a WINDOWINPUT command then EDIT will input
from and output to the current window, whereas a preceding FILEINPUT
command will cause EDIT to receive its input from a file.

For example:

; *¥*¥* Edit example
; ¥** Filename - Edit.bb2

NPrint "Enter a number:"
*** Tnput a number (10 characters max)
A=Edit(10)
NPrint "Your number was ",A
*** Wait for a mouse click
MouseWait

118

5.Input/Output

; ¥** Return to Blitz Basic 2 editor
End

DEFAULTINPUT

Mode(s): Amiga/Blitz
Statement: receive Edit$ input from CLI window
Syntax: DefaultInput

DEFAULTINPUT forces all future EDIT$ functions to receive input from the CLI window the program was
run from. This is the default channel used when a Blitz Basic program is first run. For example:

; *** DefaultInput example
; *** Filename - DefaultInput.bb2

; ¥** Open an Intuition display

Screen 0,0,100,320,200,3,0,"A Screen",1,2
Window ©0,10,40,200,50,%$1000,"A Window",1,2
NPrint "Enter text into window"

; ¥** Input some text (10 characters max)
A$=Edit$(10)

; ¥** Send input/output to CLI window
DefaultInput

DefaultOutput

; *** Remove window from display
CloselWindow ©

NPrint "Enter some text into CLI window"

; ¥** Input some more text (10 characters max)
B$=Edit$(10)

; *** Return to Blitz Basic 2 editor

End

BITMAPINPUT

Mode(s): Blitz
Statement: enable Edit & Edit$ in Blitz mode
Syntax: BitMapInput

The BIMAPINPUT statement enables the EDIT and EDIT$ functions in Blitz mode. A BLITZKEYS ON
statement must have been executed prior to BITMAPINPUT, otherwise it will not function correctly. A
BITMAPOUTPUT statement must also be executed before an EDIT or EDIT$ function. Here is an
example:

119

5.Input/Output

; ¥** Using Edit$ in Blitz mode
; *** Filename - BitMapInput.bb2

BLITZ

; ¥** Open a Blitz mode display

BitMap 0,320,256,3

Slice 0,44,3

Show ©

; ¥** Direct text output to BitMap
BitMapOutput ©

; *** Enable Blitz mode keyboard reading
BlitzKeys On

BitMapInput

Locate 0,2

;5 *** Input some text (9 characters max)
A$=Edit$("Type away",9)

; ¥** Return to Blitz Basic 2 editor

End

5.3 The Joystick

A joystick is, if you play games, the single most important peripheral for your Amiga. That little black
box of electrical trickery can be used to blast baddies, dodge dinosaurs and drive Diablos! Thankfully
Blitz Basic provides us with a number of exciting commands which take full control over the common or
garden joystick.

JOYR

Mode(s): Amiga/Blitz
Function: return the status of a joystick
Syntax: direction=Joyr(PORT)

The JOYR function is used to find out in which way the joystick is being waggled. If you want to take a
look at the joystick port then you must tell Blitz to investigate port (1). Or, if you want to snoop around
the mouse port (if another joystick is connected) then point Blitz towards port (0). Try the following
example which prints the status of a joystick in port 1:

;5 *¥** Joyr example
; *** Filename - Joyr.bb2

; ¥** Repeat until fire button is pressed
Repeat

5 *¥** Output joystick status

NPrint Joyr(1)
Until Joyb(1)<>0

120

5.Input/Output

; ¥** Return to Blitz Basic 2 editor
End

When you run the program, irrelevant numbers appear on the screen that change according to joystick
movement. Wouldn't it be nice if you knew what these numbers meant? Then why not take a look at
the table below (for your convenience | have also included corresponding compass bearings).

Table 5.2 : Reading the joystick port using JOYR

Bit number Joystick direction

0 up [N]

1 Up & Right [NE]
2 Right [E]

3 Down & Right [SE]
4 Down [S]

5 Down & Left [SW]
6 Left [W]

7 Up & Left [NW]
8 No direction

JOYX

Mode(s): Amiga/Blitz
Function: return the left/right status of a joystick
Syntax: direction=Joyx(PORT)

This returns a value of (-1) if the joystick connected to the given port number has been moved to the
left. If the joystick is held to the right then this value is (1), otherwise a value of (0) is returned (meaning
the joystick is held neither left nor right). Here is an example:

; *¥** Joyx example
; *** Filename - Joyx.bb2

BLITZ

BitMap ©0,320,256,4

; ¥** Create BOB

Boxf 1,1,10,10,1

GetaShape 0,0,0,11,11

Cls

Slice 0,44,4

Show ©

; *** Starting co-ordinates of BOB
X=150

Y=100

; ¥** BitMap storage buffer
Buffer 0,16384

121

5.Input/Output

Repeat
Viait
UnBuffer ©
*** Test joystick and move BOB
If Joyx(1)=-1 AND X>0 Then X-2
If Joyx(1)=1 AND X<300 Then X+2
BBlit ©,0,X,Y
Until Joyb(1)>0
; ¥** Return to Blitz Basic 2 editor
End

Joyy

Mode(s): Amiga/Blitz
Function: return the up/down status of a joystick
Syntax: direction=Joyy(PORT)

JOYY works in a similar way to JOYX. It returns a value of (-1) if the joystick connected to the given port
is held upwards, and a value of (1) if it is held downwards. Otherwise it returns a value of (0) (meaning
the joystick is held neither upwards nor downwards). For example:

; *¥** Joystick control
*** Filename - Joyy.bb2

BLITZ

BitMap ©,320,256,4

; *** Create BOB

Boxf 1,1,10,10,1

GetaShape 0,0,0,11,11

Cls

Slice 0,44,4

Show ©
*** Starting co-ordinates of BOB

X=150

Y=100

; *** BitMap storage buffer

Buffer 0,16384

Repeat
ViWait
UnBuffer ©

*** Test joystick and move BOB

If Joyx(1)=-1 AND X>0 Then X-2
If Joyx(1)=1 AND X<300 Then X+2
If Joyy(1)=-1 AND Y>1@ Then Y-2
If Joyy(1l)=1 AND Y<200 Then Y+2
BBlit ©,0,X,Y

Until Joyb(1)>0

122

5.Input/Output

; ¥** Return to Blitz Basic 2 editor
End

JOYB

Mode(s): Amiga/Blitz
Function: return the button status of the joystick/mouse
Syntax: button=Joyb(PORT)

In order to read the status of either the joystick or mouse buttons you must use the JOYB command,
followed by the port number. A value of (1) will be returned only if the left button is held down. If the
right button is held down then a value of (2) is returned. You may also find it useful, on some occasions,
to test if both buttons are pressed (a value of (3) is returned). Finally, if no buttons are held down then
JOYB will graciously return (0). Try the following example:

; ¥** Joyb example
; *** Filename - Joyb.bb2

OK=1
Repeat
ViWait
A=Joyb(9)
If A>0
If A=1 Then NPrint "Left mouse button"
If A=2 Then NPrint "Right mouse button"
If A=3
NPrint "Both buttons"
VWait 50
OK=0
EndIf
Repeat : Until Joyb(0)=0
EndIf
Until OK=0
; *** Return to Blitz Basic 2 editor
End

5.4 Reading the mouse status

Whereas the joystick has come to be regarded as the tool of the games player, the mouse has had a
much wider use. It has been used as a control method for games (as in Populous and Syndicate), and
more often for controlling applications (such as those involving Intuition). Blitz Basic's powerful mouse
commands can be used to create both.

123

5.Input/Output

MOUSE

Mode(s): Amiga
Statement: turn Blitz mode mouse reading on or off
Syntax: Mouse On/Off

The MOUSE statement toggles Blitz mode mouse reading. In order for the following functions to work
in Blitz mode, mouse reading must have been previously enabled:

*¥** Mouse example
; ¥** Filename - Mouse.bb2

BLITZ

BitMap ©,320,256,2
BitMapOutput ©
Slice 0,44,2

Show ©

Boxf 0,0,10,10,1
GetaShape 0,0,0,10,10
GetaSprite 0,0
Mouse On

Pointer 0,0

While Joyb(@)=0

ViWait
Locate 0,0
NPrint "X = ",MouseX," "
NPrint "Y = ",MouseY," "
Wend
*** Return to Blitz Basic 2 editor
End
MOUSEX

Mode(s): Blitz
Function: return the current horizontal location of the mouse pointer
Syntax: X=MouseX

MOUSEX is a Blitz mode command whose purpose is to find the current horizontal location of the
mouse pointer. Blitz mode mouse reading must have been previously enabled using MOUSE ON. For
example:

124

5.Input/Output

*** Mouse coordinates
*** Fjlename - MouseX.bb2

BLITZ

BitMap ©0,320,256,1

Slice 0,44,1

Show ©

BitMapOutput ©

Mouse On

MouseArea 0,0,320,256

Repeat
Locate 0,0 : Print "X coord: ",MouseX,
Locate 0,1 : Print "Y coord: ",MouseY,
ViWait

Until Joyb(©)>0
*** Return to Blitz Basic 2 editor

End

MOUSEY

Mode(s): Blitz
Function: return the current vertical location of the mouse pointer
Syntax: y=MouseY

MOUSEY is the vertical equivalent of MOUSEX in that it returns the current vertical location of the
mouse pointer. Blitz mode mouse reading must have been previously enabled using MOUSE ON. See
above example.

MOUSEXSPEED

Mode(s): Blitz
Function: return the current horizontal direction of mouse movement
Syntax: xdirection=MouseXSpeed

MOUSEXSPEED is one of those blindingly obvious commands, whose function is to find the current
horizontal speed of mouse movement. Again, Blitz mode mouse reading must have been previously
enabled using MOUSE ON. If a negative value is returned, then the mouse has been moved leftwards.
Conversely, positive values mean that the mouse has been moved rightwards. Here is an example:

; *** Mouse speed
*** Filename - MouseXSpeed.bb2

BLITZ
BitMap ©,320,256,1

125

5.Input/Output

Slice 0,44,1

Show ©

BitMapOutput ©

Mouse On

MouseArea 0,0,320,256

Repeat
Locate 0,0:Print "X speed: ",MouseXSpeed,"
Locate 0,1:Print "Y speed: ",MouseYSpeed,"
VWait 5

Until Joyb(@)>0
*** Return to Blitz Basic 2 editor

End

Note that MOUSEXSPEED should only be used after the execution of VWAIT, or during a vertical blank
interrupt (#5).

MOUSEYSPEED

Mode(s): Blitz
Function: return the current vertical direction of mouse movement
Syntax: ydirection=MouseYSpeed

If Blitz mode mouse reading has been enabled, MOUSEYSPEED can be used to return the current
vertical speed of mouse movement. If a negative value is returned, then the mouse has been moved
upwards. If a positive value is returned, the mouse has been moved downwards. See previous example.

MOUSEWAIT

Mode(s): Amiga/Blitz
Statement: wait for click of left mouse button
Syntax: MouseWait

MOUSEWAIT halts program flow until the left mouse button is clicked. This is often useful in Blitz Basic
to prevent a program from terminating too quickly and returning you to the editor. Try the following
example:

*¥** Waiting room
; *** Filename - MouseWait.bb2

BLITZ

BitMap ©,320,256,3

Slice 0,44,3

Show ©

BitMapOutput ©

NPrint "Game Over - Press left mouse button”
; ¥** Wait for a mouse click

MouseWait

126

5.Input/Output

; *¥** Return to Blitz Basic 2 editor
End

MOUSEWAIT should normally only be used ofor program testing purposes as it severely slows down
multi-tasking.

5.4.1 The mouse pointer

If, like me, you hate WIMP (Windows, Icons, Menus and Pointers to the boffins) then you'll be glad to
know that you can change the shape of the pointer. The Amiga's mouse pointer is boring. Sorry to
offend any hardened pointer-spotters, but a red white and black arrow is hardly indicative of the
Amiga's graphical prowess. How about a splash of real colour?

POINTER

Mode(s): Blitz
Statement: attach a sprite to the mouse pointer
Syntax: Pointer SPRITE#,CHANNEL

The POINTER command can be used to dress the mouse pointer in Sunday best. In theory, to change
the shape of the pointer arrow, you use the POINTER command followed by the sprite and channel
numbers. However, in practise you must execute the following sequence:

1. Load a suitable sprite
2. Create a Slice

3. Execute MOUSE On
4. Execute POINTER

For example:

; *** point me in the right...
; *** Filename - Pointer.bb2

LoadShape 0, "pointer_sprite"
LoadPalette 0,"pointer_sprite",16
GetaSprite 0,0

BLITZ

Bitmap ©,320,DispHeight,4

Slice 0,44,4

Use Palette ©

Show ©

Mouse On

Pointer 0,0

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

127

5.Input/Output

For more information on sprites and their use, please consult Chapter 8.

MOUSEAREA

Mode(s): Blitz
Statement: 1limit mouse pointer to part of the display
Syntax: MouseArea X1,Y1,X2,Y2

MOUSEAREA is one of those cunning commands whose use is best described by an analogy. Imagine if
you would, a little mouse (the fury kind) running freely about the house. MOUSEAREA is rather like a
cage, which keeps the mouse from roaming freely. The command creates a rectangular area in which
the mouse pointer can move, but cannot move out of. For example:

*** MouseArea examplel
**¥* Fjilename - MouseAreal.bb2

MouseArea 10,10,100,100

*¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

If you need to free the mouse from its cage then simply increase the size of its play area:

*¥** MouseArea example2
*** Filename - MouseArea.bb2

MouseArea 0,0,320,200 ; *** This is the default area
*** Wait for a mouse click

MouseWait
*** Return to Blitz Basic 2 editor

End

Who needs cats?

5.5 File access

This section will teach you about all aspects of file access. Note that none of these commands are
available in Blitz mode.

5.5.1 File requesters

File requesters are used to select files from within simple and complex disk structures (ie. directories
and sub-directories).

128

5.Input/Output

FILEREQUEST$

Mode(s): Amiga
Function: open a file requester
Syntax: f$=FileRequest$("TITLE", "PATHNAME", "FILENAME")

The FILEREQUEST$ function opens a standard Amiga-style file requester on the currently used screen.
Program flow will halt until the user either selects a file, or hits the requester's "CANCEL" button. If a file
was selected, FILEREQUESTS will return the full name as a string. If "CANCEL" was selected then a null
string (") is returned.

The TITLE$ parameter may be any text string to be used as a title for the file requester. PATHNAME is a
string with a maximum length of at least 160. FILENAME is a string with a maximum length of at least
64. The PATHNAME and FILENAME parameters must be set with the MAXLEN statement before a file
requester is opened. Try the following example:

; *** FileRequest$ example
; *** Filename - FileRequest$.bb2

Screen 0,348

ScreensBitMap 0,0

BitMapOutput ©

; *¥** Maximum length of path and filename
MaxLen PATH$=160

MaxLen FILENAME$=64

; *** Create file requester
A$=FileRequest$("Select a file",PATH$,FILENAME$)
Locate 0,5

; *¥** Output selected file

NPrint A$

; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

5.5.2 Opening a file

OPENFILE

Mode(s): Amiga
Function: open a file
Syntax: 0=0OpenFile(FILE#,"FILENAME")

OPENFILE is used to open both sequential and random access files. If the file is successfully opened
then OPENFILE returns (-1), otherwise (0) is returned. OPENFILE can be used to both read from and

129

5.Input/Output

write to files. If "FILENAME" does not exist then it will be created by OPENFILE. For example:

; *¥** OpenFile example
; *** Filename - OpenFile.bb2

; *** Save file to RAM disk
If OpenFile(@,"RAM:FILE")
MaxLen ASTRING$=32
Fields ©,ANUMBER,ASTRING$
ANUMBER=Int(Rnd(10)+1)
ASTRING$="Blitz Basic"
Put 0,0
CloseFile ©
; *** Read file back into memory
If OpenFile(@,"RAM:FILE")
Fields ©,ANUMBER,ASTRING$
ANUMBER=0
ASTRING$=""
Get 0,0
NPrint ANUMBER
NPrint ASTRING$
CloseFile ©
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
EndIf
EndIf

5.5.3 Examining files

LOF

Mode(s): Amiga
Function: return the length of a file
Syntax: l=Lof(FILE#)

The LOF function delivers the length of a file in bytes. FILE# is the channel number of the file the
function will access. The LOF function can only be used with a file that has previously been opened with
OPENFILE. For example:

; ¥** Lof example
; ¥** Filename - Lof.bb2
If OpenFile(@,"RAM:FILE")

MaxLen ASTRING$=32
Fields ©,ASTRING$

130

5.Input/Output

ASTRING$="Douglas"
Put 0,0
NPrint Lof(@)," bytes™
CloseFile ©
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End
EndIf

EXISTS

Mode(s): Amiga
Function: return the length of a file if it exists
Syntax: e=Exists("FILENAME")

This function returns the length of a file. If the file specified in the "FILENAME" parameter does not exist,
or a disk is not present in the specified drive, then (0) is returned. For example:

**¥* Exists example
**¥* Fjilename - Exists.bb2

Screen 0,3
ScreensBitMap 0,0
BitMapOutput ©
Locate 0,3
; *** Is Blitz Basic in DF@?
If Exists("DF@:Blitz2")
NPrint "File exists!"
Else
NPrint "File does not exist!"
EndIf
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

EOF

Mode(s): Amiga
Function: read the end status of a file
Syntax: e=Eof (FILE#)

The EOF function reads the file data pointer and returns the following values depending on if it has
reached the end of the specified file or not. The LOF function can only be used with a file that has

131

5.Input/Output

previously been opened with OPENFILE:

Table 5.3 : Values returned by EOF

End of file? Return

True =il
False 0
For example:

; *** Eof example
; ¥** Filename - Eof.bb2

If WriteFile (@,"RAM:A FILE")
; ¥** Create file to read
FileOutput ©
Print "This is a Blitz Basic file"
CloseFile ©
DefaultOutput
If ReadFile (©,"RAM:A FILE")
FileInput ©
; *¥** Read file until end is reached
While Eof(0)=0
VWait
Print Inkey$
Wend
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End
EndIf
EndIf

LOC

Mode(s): Amiga
Function: return position in a file
Syntax: l=Loc(FILE#)

LOC returns the current position of the data pointer in a file. When a file is first opened, the data pointer
is located at position (0). For example:

132

5.Input/Output

; *** Loc example
; ¥** Filename - Loc.bb2

If WriteFile (O, "RAM:TESTER")
; ¥** Create file
FileOutput ©
Print "Hello from Blitz Basic 2!"
CloseFile ©
DefaultOutput
; ¥** Read file
If ReadFile (©,"RAM:TESTER")
FileInput ©
NPrint Edit$(40)
Print "File length = ",Loc(@)," characters’
CloseFile ©
DefaultInput
; ¥** Wait for a mouse click
MouseWait
; ¥*¥* Return to Blitz Basic 2 editor
End
EndIf
EndIf

5.5.4 Deleting files

KILLFILE

Mode(s): Amiga
Statement: delete a file
Syntax: KillFile "FILENAME"

KILLFILE is a rather sinister-sounding command whose purpose is to erase a file from disk. Do be
warned that any killed file cannot be replaced, so only kill unimportant data! Here is an example:

; *¥** KillFile example
;5 *** Filename - KillFile.bb2

If WriteFile (@, "RAM:KILLER")
; ¥** Create file
FileOutput ©
Print "I will not exist!"
CloseFile ©
DefaultOutput
; ¥** Delete file
KillFile "RAM:KILLER"

EndIf

133

5.Input/Output

; ¥** Return to Blitz Basic 2 editor
End

5.5.5 Sequential files

Sequential files are those that allow you to read the contents of a file only in the order in which it was
originally created. To alter the contents of a sequential file you have to load the entire file into memory,
alter the information, and save the whole file back to disk.

READFILE

Mode(s): Amiga
Function: open an existing file for sequential reading
Syntax: r=ReadFile(FILE#,"FILENAME")

The READFILE statement opens an already existing file, specified by "FILENAME", for sequential reading.
If the file was successfully opened then (-1) is returned, otherwise (0) is returned. For example:

; *** ReadFile example
; *** Filename - ReadFile.bb2

If WriteFile (@,"RAM:A FILE")
; ¥*¥* Create file
FileOutput ©
Print "Hello from Blitz Basic!"
CloseFile ©
DefaultOutput
; ¥** Read file
If ReadFile (©,"RAM:A FILE")
FileInput ©
NPrint Edit$(40)
CloseFile ©
DefaultInput
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
EndIf
EndIf

WRITEFILE

Mode(s): Amiga
Function: create a new file for sequential writing
Syntax: w=WriteFile(FILE#,"FILENAME")

134

5.Input/Output

The WRITEFILE statement creates a new file, specified by "FILENAME", for the purpose of sequential file
writing. If the file was successfully opened then (-1) is returned, otherwise (0) is returned. For example:

; *** WriteFile example
;5 *** Filename - WriteFile.bb2

If WriteFile (@©,"RAM:FILE")
; ¥** Create file
FileOutput ©
Print "WriteFile example"
CloseFile ©
DefaultOutput
; ¥** Read file
If ReadFile (O, "RAM:FILE")
FileInput ©
NPrint Edit$(40)
CloseFile ©
DefaultInput
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End
EndIf
EndIf

FILEOUTPUT

Mode(s): Amiga/Blitz
Statement: cause print commands to output to sequential file
Syntax: FileOutput FILE#

FILEOUTPUT is used to send all future print commands to the specified sequential file (FILE#). Upon file
closure, printing should be directed to another output channel.

FILEINPUT

Mode(s): Amiga/Blitz
Statement: cause input commands to receive from sequential file
Syntax: FileInput FILE#

FILEINPUT is used to cause all future input commands to receive from the specified sequential file
(FILE#). Upon file closure, input should be directed to another input channel.

Here is an example which demonstrates the use of FILEINPUT and FILEOUTPUT:

135

5.Input/Output

; *¥** FileOutput/Input example
; *** Filename - FileOutput.bb2

If WriteFile (©,"RAM:INOUT")
FileOutput ©
Print "A load of rubbish!"
CloseFile ©
DefaultOutput
If ReadFile (@, "RAM:INOUT")
FileInput ©
NPrint Edit$(40)
CloseFile ©
DefaultInput
; ¥*¥* Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End
EndIf
EndIf

FILESEEK

Mode(s): Amiga
Statement: move to a point in the specified file
Syntax: FileSeek FILE#,POSITION

The FILESEEK statement can be used to moves to a particular point in the specified file (FILE#). The
POSITION parameter must be less than the length of the file. For example:

; ¥** FileSeek example
; *** Filename - FileSeek.bb2

If WriteFile (@, "RAM:FILE")
; ¥*¥* Create file
FileOutput ©
Print "The best BASIC is Blitz "
CloseFile ©
If OpenFile (©@,"RAM:FILE")
; ¥*¥* Search for end of file
FileSeek 0,Lof(9)
; ¥** Add word to file
NPrint "Basic!"
CloseFile ©
DefaultOutput
; *** Read new file
If ReadFile (©,"RAM:FILE")
FileInput ©

136

5.Input/Output

NPrint Edit$(80)
; ¥** Wait for a mouse click
MouseWait
EndIf
EndIf

EndIf
; *¥** Return to Blitz Basic 2 editor

End

CLOSEFILE

Mode(s): Amiga
Statement: close a file
Syntax: CloseFile FILE#

CLOSEFILE closes the file specified by FILE#. try the following example:

; *** CloseFile example
; *** Filename - CloseFile.bb2

If WriteFile (O, "RAM:FILEOFAX")
FileOutput ©
Print "A closed case"
CloseFile ©

EndIf

; ¥** Return to Blitz Basic 2 editor

End

5.5.6 Random access files

The most obvious difference between a random access file and a sequential file is in the access method.
With a sequential file the entire file must be loaded into memory in order to access one field. In a
random access file, however, one record can be read into memory without having to read in the entire
file. The disadvantage of random access files is that a larger file area is required on disk.

FIELDS

Mode(s): Amiga/Blitz
Statement: set-up fields of a random access file record
Syntax: Fields FILE#,VAR1[,VAR2...]

The FIELDS statement is used to set-up the fields of a random access file record. The numeric
expression FILE# is the number of the data channel of a data file previously opened with OPENFILE. The
VAR parameters specify a list of variables that can be read from or written to the file.

137

5.Input/Output

Any string variables in this list must have been initialised to contain a maximum number of characters
using the MAXLEN statement.

PUT

Mode(s): Amiga
Statement: Write a specific record to a random access file.
Syntax: Put FILE#,RECORD

PUT writes a specific record to a random access file.

GET

Mode(s): Amiga
Statement: Read a specific record from a random access file
Syntax: Get FILE#,RECORD

GET reads a specific record from a random access file.

The following example demonstrates the use of the FIELDS, GET, and PUT statements in the creation of
random access files:

*** Random access file example ; *** Filename - Random Access.bb2

If OpenFile (O, "RAM:TEST")
*¥** Maximum length of string field
MaxLen B$=32
*** Define fields
Fields 0,A,B$%
*** Field contents
A=17
B$="Blitz Basic"
Put 0,0
CloseFile ©
*** Read file
If OpenFile (©@,"RAM:TEST")
*** Define fields
Fields ©,A,B%
*** Tnitialise variables (not necessary)
A=0
B$=""
*** Grab variables from file
Get 0,0
NPrint "A = " A
NPrint "B$ = ",B$%
CloseFile ©
*¥** Wait for a mouse click

138

5.Input/Output

MouseWait
EndIf
EndIf
; ¥** Return to Blitz Basic 2 editor
End

5.5.7 Advanced file access

The following commands are primarily of use to the advanced Blitz Basic programmer. If you don't
know what you're doing, then hands off!

DOSBUFFLEN

Mode(s): Amiga/Blitz
Statement: set file buffer
Syntax: DosBuffLen BYTES

The DOSBUFFLEN statement controls the Blitz Basic file handling buffer. Initially, each file is allocated a
2048 byte buffer, however this may be decreased if memory is tight. For example:

; *** DosBuffLen example
; *** Filename - DosBufflLen.bb2

DosBuffLen 2000

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

CATCHDOSERRORS

Mode(s): Amiga/Blitz
Statement: force DOS errors to report on a Blitz window
Syntax: CatchDosErrors

CATCHDOSERRORS is used to force AmigaDOS 1/0 errors into opening on a Blitz Basic window, as
opposed to the Workbench screen. Try the following example:

; *** CatchDosErrs example
; ¥** Filename - CatchDosErrs.bb2

Screen 0,3

Window ©,0,12,320,DispHeight-12,$1008, "Window",1,2
; ¥** Send errors to window

139

5.Input/Output

CatchDosErrs
; *¥** Try reading file
If ReadFile (9, "DFO:GARBAGE")
Else
Print "Can't open file"
EndIf
Repeat
Until WaitEvent=$200
; ¥** Return to Blitz Basic 2 editor
End

READMEM

Mode(s): Amiga
Statement: read a number of bytes into an absolute memory location
Syntax: ReadMem FILE#,ADDRESS,LENGTH

The READMEM statement reads a number of bytes, determined by the LENGTH parameter, into an
absolute memory location, specified by the ADDRESS parameter, from a file. FILE# is the number of a
file already opened with OPENFILE.

WRITEMEM

Mode(s): Amiga
Statement: write a number of bytes from an absolute memory location
Syntax: WriteMem FILE#,ADDRESS,LENGTH

The WRITEMEM statement writes a number of bytes, determined by the LENGTH parameter, from an
absolute memory location, specified by the ADDRESS parameter, to a file. FILE# is the number of a file
already opened with OPENFILE.

5.6 End-of-Chapter summary

Text can be printed onto the screen using PRINT and NPRINT. NPRINT automatically outputs a newline
character

The text style can be altered using LOADBLITZFONT. LOADBLITZFONT can only be used with eight-by-
eight non-proportional fonts.

The COLOUR statement is used to alter the colour used to render text to BitMaps.
LOCATE can be used to position the text cursor.
The CURSOR statement is used to alter the appearance of the text cursor.

Blitz Basic provides full control over the Amiga keyboard. The keyboard must be correctly enabled to be
read in Blitz mode.

140

5.Input/Output

The appearance of the mouse pointer can be changed with POINTER. Blitz Basic also provides full
control over standard nine pin joysticks.

There are two types of file access: sequential and random access. With sequential files the entire file
must be loaded into memory in order to access one field. In random access files, however, one record
can be read into memory without having to read in the entire file.

141

Chapter 6 : BitMaps and Slices

This chapter explains how BitMaps and Slices are created and manipulated. It will also show you how to
create smooth-scrolling and dual-playfield displays.

6.1 Creating a BitMap

BitMap objects, or BitMaps, are used for the rendering of graphics. Nearly all of the Blitz Basic 2 graphic
commands require a BitMap to output onto, with the notable exceptions being the window and sprite
commands (more on those later).

BitMaps can either be created from scratch by the BITMAP statement, or borrowed from a convenient
screen using SCREENSBITMAP.

BITMAP

Mode(s): Amiga/Blitz
Statement: open a new BitMap
Syntax: BitMap BITMAP#,WIDTH,HEIGHT,BITPLANES

This statement creates and initializes a BitMap (BITMAP#). The WIDTH and HEIGHT parameters specify
the dimensions of the BitMap in pixels. The BITPLANES parameter is the number of bitplanes associated
with the BitMap. The value you specify (ranging from one to six) determines the number of colours that
can be displayed on the BitMap, as shown in the following table:

Table 6.1 : Number of colours per bitplane

Bitplanes Colours

Here are some examples:

; ¥** BitMap example
; *** Filename - BitMap.bb2

BLITZ

BitMap ©,320,256,1 ; *** 2 colour BitMap
Slice 0,44,1

Show ©

142

6.Bitmaps and Slices

**¥* Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

; ¥** BitMap example 2
*** Filename - BitMap2.bb2

BLITZ
BitMap 0,640,256,5 ; *** Double-width 32 colour BitMap
Slice 0,44,5

Show ©
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

**¥* BitMap example 3
; *** Filename - BitMap3.bb2

BLITZ
BitMap ©,320,256,3 ; *** 8 colour BitMap
BitMapOutput ©
Slice 0,44,3
Show ©
Locate 15,10
NPrint "A BitMap"
*** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.1.2 Manipulating BitMaps

USE BITMAP

Mode(s): Amiga/Blitz
Statement: set current BitMap
Syntax: Use BitMap BITMAP#

USE BITMAP is used to set a specified BitMap as the current BitMap. For example:

143

6.Bitmaps and Slices

*** Use BitMap example
; *** Filename - Use BitMap.bb2

BitMap ©,320,256,3
For A=1 To 100
Plot Rnd(320),Rnd(256),Rnd(6)+1
Next A
BitMap 1,320,256,3
BLITZ
Slice 0,44,3
For A=1 To 10
Show MAP : MAP=1-MAP: Use BitMap MAP
ViWait 30
Next A
; *** Return to Blitz Basic 2 editor
End

FREE BITMAP

Mode(s): Amiga/Blitz
Statement: erase a BitMap
Syntax: Free BitMap BITMAP#

The FREE BITMAP statement closes a BitMap and frees any memory occupied it. For example:

*** Free BitMap example
; *** Filename - Free BitMap.bb2

BitMap ©,320,256,3
For A=1 To 100
Circle Rnd(320),Rnd(256),Rnd(10)+2,Rnd(6)+1
Next A
BLITZ
Slice 0,44,3
Show ©
VWait 100
Free BitMap ©
; *** Return to Blitz Basic 2 editor
End

144

6.Bitmaps and Slices

COPYBITMAP

Mode(s): Amiga/Blitz
Statement: clone a BitMap
Syntax: CopyBitMap SOURCE,DESTINATION

This statement makes a carbon copy of a BitMap. SOURCE is the number of the BitMap to clone and
DESTINATION is the number of the destination BitMap. Try the following example:

*** CopyBitMap example
; ¥** Filename - CopyBitMap.bb2

BitMap 1,320,256,3
BitMap ©,320,256,3
BitMapOutput ©
BLITZ
Slice 0,44,3
Show ©
For A=1 To 100
Locate Rnd(25)+3,Rnd(25)
Colour Rnd(6)+1
Print "Game Over"
VWait
Next A
CopyBitMap 0,1
ViWait 20
Cls o
VWait 50
Use BitMap 1
Show 1
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

SCREENSBITMAP

Mode(s): Amiga/Blitz
Statement: attach a BitMap to an intuition screen
Syntax: ScreensBitMap SCREEN#,BITMAP#

Blitz Basic also allows the user to "attach" a BitMap to an Intuition Screen. BitMaps are automatically
created when these Screens are opened. For example:

145

6.Bitmaps and Slices

*** ScreensBitMap example
; *** Filename - ScreensBitMap.bb2

BitMap ©,320,256,3
PalRGB 0,0,0,0,0
Screen 0,3,"Stardom"
ScreensBitMap 0,0
Use Palette ©
For A=1 To 100
Plot Rnd(320),Rnd(200)+30,Rnd(6)+1
Next A
; ¥** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

SCROLL

Mode(s): Amiga/Blitz
Statement: move a portion of a BitMap
Syntax: Scroll X1,Y1,WIDTH,HEIGHT,X2,Y2[,BITMAP#]

This statement allows you to move, or scroll, a rectangular portion of a BitMap. X1 and Y1 are the co-
ordinates of the upper left-hand corner of the rectangle and WIDTH and HEIGHT specify its size. The X2
and Y2 parameters are the destination co-ordinates. If the optional BITMAP# parameter is included
then the rectangle is taken from this BitMap instead, and copied to the current BitMap. Here's an
example:

; ¥** Scroll example
*** Fjilename - Scroll.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
For A=1 To 50

Circlef Rnd(320),Rnd(100),Rnd(20)+10,Rnd(5)+1
Next A
Scroll 0,0,320,100,0,140

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

146

6.Bitmaps and Slices

REMAP

Mode(s): Amiga/Blitz
Statement: change pixels of one colour to another colour
Syntax: ReMap COLOUR1#,COLOUR2#[,BITMAP#]

The REMAP statement can change pixels of one colour on a BitMap to another colour. COLOUR1#
specifies the colour to change and COLOURZ2# is the number of the new colour. If the optional BITMAP#
parameter is included then the a BitMap other than the current BitMap may be used. Try the following
example:

; *** ReMap example
; ¥** Filename - ReMap.bb2

BLITZ
BitMap ©,320,256,5
Slice 0,44,5
Show ©
; ¥** Plot a boring white starfield
For COLS=1 To 14
RGB COLS,15,15,15
Next COLS
For A=0 To 300
Plot Rnd(320),Rnd(256),Rnd(14)+1
Next A
MouseWait
; *** Add a splash of colour
For B=1 To 14
ReMap B,B+8
Next B
Repeat : Until Joyb(0)=0
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

BITPLANESBITMAP

Mode(s): Amiga/Blitz
Statement: create new BitMap with bitplanes from old BitMap
Syntax: BitPlanesBitMap SOURCE,DESTINATION,BITPLANES

This statement is used to create a "dummy" BitMap (DESTINATION) from the source BitMap (SOURCE),
with only the bitplanes specified by the BITPLANES parameter. This is useful for increasing blitting
speed because of the fewer bitplanes involved.

147

6.Bitmaps and Slices

Table 6.2 : The BITPLANES parameter

Bitplane Flag

00 NO UV A WN PR
s
()
(o]

Flags can be combined with the logical (|) operator.

The BITPLANESBITMAP statement can also be used to create special effects, such as shadows. This
example was created by Tim Caldwell:

; *** BitPlanesBitMap example
; ¥** Filename - BitPlanesBitMap.bb2

BLITZ
BitMap ©0,320,256,5
BitMapOutput ©
;5 *** Create dummy BitMap (bitplane 5)
BitPlanesBitMap 0,1,%$10
Slice 0,44,5
Show ©
X=80 : Y=48 : W=160 : H=160
Use BitMap ©
; *** Draw BitMap graphics
For COL=0 To 15
R=QLimit(Red(COL)-5,0,15)
G=QLimit(Green(COL)-5,0,15)
B=QLimit(Blue(COL)-5,0,15)
RGB COL+16,R,G,B
Boxf X,Y,X+W,Y+H,COL
X+4 : Y+4 : W-8 : H-8
Next COL
X=120 : Y=88 : W=80 : H=80
; *¥** Use dummy BitMap
Use BitMap 1
While Joyb(1)=0
; *¥** Use joystick to move shadow
IX=Joyx(1) : JY=Joyy(1l)
If JX OR JY=True
Cls
X=QLimit(X+3X,0,320-W)
Y=QLimit(Y+3Y,0,256-H)
EndIf

148

6.Bitmaps and Slices

; ¥** Draw shadow

Boxf X,Y,X+W,Y+H,1

ViWait
Wend
; *** Return to Blitz Basic 2 editor
End

6.1.3 Loading and saving BitMaps

LOADBITMAP

Mode(s): Amiga
Statement: load an IFF screen from disk
Syntax: LoadBitMap BITMAP#,"FILENAME"[,PALETTE#]

The IOADBITMAP statement loads an IFF picture (such as a DPaint file) into a previously opened BitMap.
If the optional PALETTE parameter is included then the picture's palette may be loaded into a palette
object. Here is an example:

; *** LoadBitMap example
; *** Filename - LoadBitMap.bb2

BitMap ©,320,256,5
LoadBitMap ©,"FILENAME.IFF",0

BLITZ

Slice 0,44,5

Show ©

Use Palette ©

; ¥** Wait for a mouse click
MouselWait

; *** Return to Blitz Basic 2 editor
End

SAVEBITMAP

Mode(s): Amiga
Statement: save an IFF screen to disk
Syntax: SaveBitMap BITMAP#,"FILENAME"[,PALETTE#]

SAVEBITMAP saves a BitMap to disk as an IFF file. If the optional PALETTE# parameter is included then
the picture's palette may be saved to disk as well:

149

6.Bitmaps and Slices

; *** SaveBitMap example
; *¥** Filename - SaveBitMap.bb2

BitMap ©,320,256,5
; ¥** Draw a nice random picture
For A=1 To 100
Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(10)+5,Rnd(6)+1
Next A
BLITZ
Slice 0,44,5
Show ©
; *** Pop into Amiga mode and save BitMap
QAMIGA
SaveBitMap ©0,"df@:Elipse.IFF"
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

6.1.4 Display synchronisation

The computer display is updated fifty times every second on PAL systems, and sixty times a second on
NTSC systems. Here, the display is created by an electron beam which scans across every line of the
screen until it reaches the bottom right-hand corner, where it jumps back to the top of the screen
again. The period between the completion of one display cycle and the next is known as the "vertical
blank period".

Because some Blitz commands work faster than others, it is often useful to wait for the next vertical
blank period before executing them, so as to achieve perfect display synchronisation. This is where the
VWAIT statement comes in.

VWAIT

Mode(s): Amiga/Blitz
Statement: wait for next vertical blank period
Syntax: VWait [FRAMES]

This statement waits for the next vertical blank period and is used to achieve perfect display
synchronisation. The optional FRAMES parameter may be used to specify a particular number of vertical
blanks (the default is one). Try the following example which illustrates the use of VWAIT:

150

6.Bitmaps and Slices

; *¥** VWait example
; ¥** Filename - VWait.bb2

; *** Pop onto Blitz mode
BLITZ
; *** Create a Blitz mode display
BitMap ©,320,256,3
Slice 0,44,3
Show ©
; *** Create a shape
Boxf 10,10,50,50,5
GetaShape 0,10,10,50,50
Cls
*** Tnitialize BBLIT buffer
Buffer 0,16384
*** Flickery animation
For X=1 To 250
UnBuffer ©
BBlit ©,0,X,50
Next X
ViWait 50
; ¥** No flicker!
For X2=1 To 250
VWait
UnBuffer ©
BBlit ©,0,X2,50
Next X2
*** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

VPOS

Mode(s): Amiga/Blitz
Function: return the video beam's vertical position
Syntax: v=VPos

VPOS returns the video beam's vertical position. This is primarily of use in high-speed animations where
screen update needs to by syncronised to a certain video beam position (not the top of the frame as
with VWAIT). However, it can also be used as a high-speed random number generator, as in the
following example:

151

6.Bitmaps and Slices

*** \VPos example ** Filename - VPos.bb2
*** Loop 20 times
For A=1 To 20
*** Return video beam position
RANDOM=VPos
*** Qutput returned value
NPrint RANDOM

Next A

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

6.2 Defining a Slice

Slices are Blitz mode screens. However, unlike screens, Slices can be used to create dual-playfield
displays (more on these later), smooth scrolling, double buffering and more!

A Slice description includes information on display mode, palette and sprite and bitplane details.

A Slice's x co-ordinate is calculated in a way which causes the Slice to be horizontally centred based on
its width.

More than one Slice may be set up at a time, allowing different areas of the display to take on different
properties:

The SHOW statement is used to display a BitMap in a Slice.

There are limits placed upon how multiple Slices may be arranged. Multiple Slices must be positioned
vertically on top of each other, with a gap of two horizontal lines between each Slice. Slices must not
overlap or be positioned together on the x-axis.

SLICE

Mode(s): Amiga/Blitz

Statement: create a Slice object

Syntax: Slice SLICE#,Y,FLAGS1

Syntax 2: Slice SLICE#,Y,W,H,FLAGS2,D,S,COLS,WIDTH1,WIDTH2

6.2.1 Syntax 1

The Slice statement is used to define a Slice object. SLICE# is the number of the Slice to be defined. The
Y parameter specifies the vertical location of the top of the Slice, ranging from 44 to the bottom of the
current display. In other words, a value of 44 displays the Slice at the very top of a display.

152

6.Bitmaps and Slices

In the first syntax, FLAGS1 refers to the number of bitplanes to be shown in the Slice, from one (a
maximum of two colours) to six (a maximum of 64 colours). This syntax automatically creates a low-
resolution Slice, however by adding eight to the FLAGS1 parameter this may be changed to a high-
resolution Slice.

Table 6.3 : The FLAGS1 parameter

FLAGS1 Resolution Width Bitplanes Colours

1 Low 320 1 2
2 Low 320 2 4
3 Low 320 3 8
4 Low 320 4 16
5 Low 320 5 32
6 Low 320 6 64 (Half-Brite)
9 High 640 1 2
10 High 640 2 4
11 High 640 3 8
12 High 640 4 16

Note that the height of a Slice set up with the first syntax will be 256 pixels on a PAL Amiga, or 200
pixels on an NTSC Amiga.

Here are some examples:

*** Slice example ** Filename - Slicel.bb2

BitMap ©,320,256,9

BLITZ

Slice 0,44,1 ; *** 2 colour hi-res Slice
Show ©

; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

*** Slice example 2 ** Filename - Slice2.bb2

BitMap ©,320,256,5
BLITZ
Slice 0,44,5 ; *** 32 colour low-res Slice
Show ©
; ¥** Wait for a mouse click
MouseWait
*¥** Return to Blitz Basic 2 editor
End

153

6.Bitmaps and Slices

6.2.2 Syntax 2

W and H specify the width and height (in pixels) of the Slice. D, or DEPTH, is the number of bitplanes to
be shown in the Slice. The S parameter specifies the number of available sprite channels. Each Slice can
have up to eight sprite channels.

The WIDTH1 and WIDTH2 parameters specify the width, in pixels, of any BitMaps to be shown in the
Slice. If a dual-playfield Slice is created then WIDTH1 refers to the width of the foreground BitMap and
WIDTH2 refers to the background BitMap. Otherwise, both WIDTH1 and WIDTH2 should be set the
same. These parameters allow you to display super-BitMaps (those larger than the physical display).

The FLAGS2 parameter is used to customise the Slice to your every requirements.

Table 6.4 : The FLAGS2 parameter

FLAGS2 Slice Maximum bitplanes

$fff8 Low-resolution 6
$fff9 High-resolution 4
$fffa Low-resolution, dual-playfield 6
$fffb High-resolution, dual-playfield 4
$fffc HAM-mode 6

Here are some examples:

; *¥** Slice example 3
; *** Filename - Slice3.bb2

BitMap ©,320,256,3

BLITZ

; ¥** 8 colour low-res Slice

Slice 0,44,320,256,%$fff8,3,8,8,320,320

Show ©

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

; *¥** Slice example 4
;5 *** Filename - Slice4.bb2

BitMap ©,320,256,1

BLITZ

; ¥** 2 colour hi-res Slice

Slice 0,44,320,256,$fff9,1,8,2,320,320
Show ©

BitMapOutput ©

Print "Hello"

154

6.Bitmaps and Slices

**¥* Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

6.2.3 Manipulating Slices

USE SLICE

Mode(s): Amiga/Blitz
Statement: set current Slice
Syntax: Use Slice SLICE#

USE SLICE is used to set the currently used Slice. This allows you to direct all Slice manipulating
commands to the specified Slice number:

*** Use Slice example
; *** Filename - Use Slice.bb2

Use Slice 1

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

FREESLICES

Mode(s): Amiga/Blitz
Statement: erase all Slices in use
Syntax: FreeSlices

Use the FREESLICES command to free all Slices currently in use. For example:

*** FreeSlices example
*** Filename - FreeSlices.bb2

*** Open a BitMap
BitMap ©,320,256,3
¥¥* Create some BitMap graphics
For A=1 To 100
Circlef Rnd(320),Rnd(256),Rnd(10)+2,Rnd(6)+1
Next A
; *** Pop into Blitz mode
BLITZ

155

6.Bitmaps and Slices

*** Create a slice
Slice 0,44,320,256,%$fff8,3,8,8,320,320
*** Display BitMap graphics in slice

Show ©

; *** Pause briefly
ViWait 100

; *** Remove old slice
FreeSlices

; ¥** Create another slice
Slice 0,44,320,256,%$fff9,3,8,8,320,320
; *** Display BitMap graphics in slice
Show ©
ViWait 100
; *** Remove old slice (again!)
FreeSlices

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

SETBPLCONO

Mode(s): Amiga/Blitz
Statement: set Slice display mode
Syntax: SetBPLCONO® DEFAULT

This statement allows advanced control of Slice display modes. The DEFAULT parameter should be set
as follows:

Table 6.5 : Display modes

BIT Mode

1 External sync (for genlock enabling)
2 Interlace mode
3 Enable light pen

Here is an example:

; *** SetBPLCONO example
; *¥** Filename - SetBPLCON®@.bb2

; *** Create a BitMap (4 bitplanes)
BitMap ©,640,512,4
; ¥** Set Interlace mode
SetBPLCONO 4

*** pop into Blitz mode

156

6.Bitmaps and Slices

BLITZ
; *¥** Open large slice
Slice 0,44,640,256,%fffb,4,8,8,1280,1280
; *** Declare interrupt
SetInt 5
If Peek($dffo04)<0 Show 0,0,0 Else Show 0,0,1
End SetInt
¥¥* Qutput BitMap graphics
For A=1 To 400
Circle Rnd(640),Rnd(512),Rnd(30)+10,Rnd(16)

Next A

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

6.2.4 Displaying a BitMap in a Slice

SHOW

Mode(s): Amiga/Blitz
Statement: display a BitMap in the current Slice
Syntax: Show BITMAP#[,X,Y]

The SHOW statement is used to display a BitMap in the currently used Slice. If the optional X and Y
parameters are included then the BitMap is positioned at these co-ordinates. For example:

; *¥** Show example
*** Filename - Show.bb2

; *** Number of stars to plot
STARS=100
; *** Pop into Blitz mode
BLITZ
*** Open a BitMap (2 bitplanes)
BitMap 0,320,DispHeight,2
*** plot a random starfield
For A=0 To STARS
Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
; ¥** Create a slice
Slice 0,44,2
; *** Grab BitMap's palette
Use Palette ©
; *** Display BitMap
Show ©
*** Wait for a mouse click
MouselWait

157

6.Bitmaps and Slices

**¥* Return to Blitz Basic 2 editor
End

If the BitMap is physically larger than the Slice then the SHOW statement may be used to scroll the
BitMap about the display.

Here is an example:

; *** Land generator
; ¥** Filename - Show2.bb2

; *** Nip into Blitz mode
BLITZ
; *** Open 2-screen wide display
BitMap ©,640,256,2
Slice 0,44,320,256,%$fff8,2,8,4,640,640
Show ©
; ¥** Simple colour graduation
For A=0 To 15
Colsplit 1,0,A,A,A*17
ColSplit 3,A,A,A,100+A*17
Next
Cls 1
*** Draw mountain landscape
Y=200 : LAND=3 : DI=-1
For X=0 To 640
D=Int(Rnd(LAND))
If D=1 Then DI=-1
If D=2 Then DI=1
Let Y4DI
If Y<0 Then Y=0
If Y>256-1 Then Y=255
Line X,256,X,Y,3
Next X
; *** Scroll landscape
For A=1 To 320
Show 0,A,0
ViWait
Next A
; ¥** Return to Blitz Basic 2 editor
End

Do not use SHOW for dual-playfield Slices. Use the following commands instead.

158

6.Bitmaps and Slices

SHOWF

Mode(s): Amiga/Blitz

Statement: display a BitMap in the foreground of the current Slice
Syntax: ShowF BITMAP#[,X,Y]

Syntax 2: ShowF BITMAP#,X,Y,ShowB X2

The SHOWF statement is used to display a BitMap in the foreground of the currently used dual-
playfield Slice. If the optional X and Y parameters are included then the BitMap is positioned at these
coordinates. The optional SHOWB X2 parameter (syntax 2) is of use when a Slice has been set up to
display a foreground BitMap only. In this case, the x offset of the background BitMap should be
specified by the SHOWB parameter.

SHOWB

Mode(s): Amiga/Blitz

Statement: display a BitMap in the background of the current Slice
Syntax: ShowB BITMAP#[,X,Y]

Syntax 2: ShowB BITMAP#,X,Y,ShowF X2

The SHOWB statement is used to display a BitMap in the background of the currently used dual-
playfield Slice. If the optional X and Y parameters are included then the BitMap is positioned at these
coordinates. The optional SHOWF X2 parameter (syntax 2) is of use when a Slice has been set up to
display a background BitMap only. In this case, the x offset of the foreground BitMap should be
specified by the SHOWF parameter:

; *** Dual Playfield example
; ¥** Filename - ShowF.bb2

BLITZ
; *** Open 2 BitMaps
BitMap ©,352,256+32,2
BitMap 1,352,256+32,2
; ¥** Create single Slice to house BitMaps
Slice 0,44,320,256,%fffa,4,8,32,352,352
; *** Display BitMap © in background
ShowB @
; ¥** Display BitMap 1 in foreground
ShowF 1
RGB 1,0,0,15
RGB 9,15,0,0
Use BitMap ©
; *** Draw foreground graphics
For Y=0 To 256 Step 16
For X=0 To 352 Step 16
COoL=1-COL
Boxf X,Y,X+16,Y+16,COL

159

6.Bitmaps and Slices

Next
Next
Use BitMap 1
; *** Draw background graphics
For Y=0 To 288 Step 16
For X=0 To 352 Step 16

CoL=1-CoL
Boxf X,Y,X+16,Y+16,COL
Next
Next

;5 ¥** Scroll playfields
While Joyb(@)=0
VWait
X=QWrap(X+1,0,32)
Y=QWrap(Y+1,0,32)
ShowB 0,X,0,Y
ShowF 1,0,Y,X
Wend
; ¥** Return to Blitz Basic 2 editor
End

SHOWBLITZ

Mode(s): Blitz
Statement: redisplay all Slices
Syntax: ShowBlitz

SHOWSBLITZ redisplays all of the Slices curently opened. This is primarily of use when you have made a
trip into Amiga mode and wish to return to Blitz mode without corrupting any Slices.

DISPLAY

Mode(s): Blitz
Statement: allows you to turn the display on or off
Syntax: DisplayOn/Off

The DISPLAY statement is used to turn the whole display on or off. If DISPLAY is set to OFF then the
display will become a solid block of colour 0. Here is an example:

; *** Display example
; *** Filename - Display.bb2

BitMap ©,320,256,3
; *** Direct PRINT statements to BitMap
BitMapOutput ©
For A=1 To 100
; ¥** Select a random cursor location...

160

6.Bitmaps and Slices

Locate Rnd(30),Rnd(25)
; ¥** __And a random colour
Colour Rnd(6)+1
Print "Blitz Basic"
Next A
*** Enter Blitz mode
BLITZ
*** Turn off display
DisplayOff
Slice 0,44,3
Show ©
VWait 100
*** Turn on display
DisplayOn
*** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

6.3 End-of-Chapter summary

BitMaps are used for rendering graphics and may be created using the BITMAP statement, or borrowed
from a screen using the SCREENSBITMAP statement.

Blitz Basic also allows you to load and manipulate BitMaps in the form of IFF graphics.

Slices are Blitz mode screens. However, unlike screens, Slices can be used to create dual-playfield and
double-buffered displays.

BitMaps are displayed in Slices using the SHOW statement. The SHOW statement may also be used to
create gigantic scrolling displays.

Table 6.6 : BitMap and Slice commands

Command Function

BITMAP Create a BitMap
BITPLANESBITMAP Create a "Dummy" BitMap
COPYBITMAP Clone a BitMap

DISPLAY Turn display on or off

FREE BITMAP Close a BitMap

FREESLICES Close all Slices

LOADBITMAP Load an IFF screen

REMAP Change BitMap colours
SAVEBITMAP Save an IFF screen
SCREENSBITMAP Attach BitMap to Intuition screen
SHOW Display BitMap in a Slice
SHOWB Display BitMap in background
SHOWBLITZ Redisplay all Slices

SHOWF Display BitMap in foreground
SLICE Create a Slice

161

6.Bitmaps and Slices

USE BITMAP Set current BitMap
USE SLICE Set current Slice

162

Chapter 7 : Graphics

Blitz Basic 2 is a powerful extended BASIC language. This means that it supports commands not present
in languages such as AmigaBasic or HiSoft Basic. As well as a comprehensive array of drawing
commands, the Blitz programmer also has Colour Palettes, IFF Animation and Copper Lists at their
disposal. Read on...

7.1 2D Drawing

Blitz Basic can generate fabulous low-resolution and high-resolution graphic displays using its powerful
drawing commands. These graphic displays are made up of small blocks of colour called pixels and all
screens are composed of thousands of pixels in varying arrangements. Here's how we manipulate these
pixels to produce anything from lines and circles to starfields and megademos.

7.1.1 Clearing with colour

CLS

Mode(s): Amiga/Blitz
Statement: clear a BitMap
Syntax: Cls [COLOUR]

This statement is used to fill the currently used BitMap with the colour specified by the COLOUR
parameter. If the optional COLOUR parameter is omitted then the BitMap will be cleared with colour (0).
A COLOUR parameter of (-1) will cause the entire BitMap to be inverted. For example:

; *¥** Cls example
; ¥** Filename - Cls.bb2

; *** Open a screen...
Screen 0,3
; ¥*¥* _..And grab its BitMap
ScreensBitMap 0,0
; *** Loop until mouse button clicked
While Joyb(@)=0
; *** Clear screen a variety of different colours
Cls Rnd(5)+1
; *** Pause briefly
ViWait 10
Wend
; *** Return to Blitz Basic 2 editor
End

163

7.Graphics

7.1.2 Gunpowder plot

PLOT

Mode(s): Amiga/Blitz
Statement: plot an individual colour pixel
Syntax: Plot X,Y,COLOUR

The PLOT statement plots a single pixel at coordinates XY in colour COLOUR on the currently used
BitMap. A COLOUR parameter of (-1) will cause the pixel to be inverted. For example:

; *** Plot Starfield
; *** Filename - Plot_Example.bb2

; ¥** Number of stars in starfield
STARS=100
; ¥** Nice space-type palette (i.e. grey!)
PalRGB 0,0,0,0,0
PalRGB 0,1,10,10,10
PalRGB 0,2,7,7,7
PalRGB 90,3,3,3,3
; *** Create Blitz mode display
BLITZ
BitMap ©,320,DispHeight,2
; ¥** Plot a random starfield
For A=0@ To STARS
Plot Rnd(320),Rnd(DispHeight),Rnd(3)+1
Next A
Slice @,44,320,DispHeight,$fff8,2,8,8,320,320
Use Palette ©

Show ©

; ¥** Wait for left mouse button
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

You can really only make very simple pictures with PLOT. To make more comlicated ones you need
special equipment such as a graphics tablet. Blitz Basic does not support these devices directly, so any
graphics should be created using a paint package, such as Deluxe Paint, saved in IFF format and loaded
into Blitz using the LOADBITMAP statement.

164

7.Graphics

7.1.3 A few pointers

POINT

Mode(s): Amiga/Blitz
Function: return the colour of an individual pixel
Syntax: a=Point(X,Y)

Use the POINT function to return the colour of a particular pixel on the currently used BitMap. If the
chosen coordinates specify a pixel outside the currently defined BitMap then a value of (-1) will be
returned. Try the following example:

¥¥* point me in the right...
**¥* Filename - Point_Example.bb2

*** Define palette
PalRGB 0,0,0,0,0
PalRGB 0,1,10,0,7
; *** Open a screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
; *** Direct PRINT statement to BitMap
BitMapOutput ©
Use Palette ©
; *** Draw 1000 coloured boxes
For A=1 To 1000
X1=Rnd(310)
X2=X1+10
Y1=Rnd(DispHeight-20)+15
Y2=Y1+10
Boxf X1,Y1,X2,Y2,Rnd(5)
Next A
Locate 0,2
; *** Select random pixel to test
B=Point(Rnd(320),Rnd(DispHeight))

Print B

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

165

7.Graphics

7.1.4 It's a fine line

LINE

Mode(s): Amiga/Blitz

Statement: draw a line

Syntax: Line X1,Y1,X2,Y2,COLOUR
Syntax 2: Line X2,Y2,COLOUR

The LINE statement draws a line connecting two pixels on the currently used BitMap. The first syntax
uses two sets of graphic coordinates to join, followed by the colour of the line. A COLOUR parameter of
(-1) will cause the line to be inverted. For example:

¥¥* Line Example
; *** Filename - Line.bb2

; *** Open a screen and grab its BitMap
Screen 0,3
ScreensBitmap 0,0
; ¥** Draw a simple straight line
Line 10,10,50,10,1
; ¥** Wait for a mouse click
MouseWait
**¥* Return to Blitz Basic 2 editor
End

If the optional X1 and Y1 parameters are omitted, as in the second syntax, then the current position of
the graphics cursor will be used as the starting co-ordinates:

*** More Lines
**¥* Fjilename - Line2.bb2

*** Open a screen and grab its BitMap
Screen 0,3
ScreensBitmap 9,0

*** Draw 50 lines at random co-ordinates
For A=1 To 50

Line Rnd(320),Rnd(DispHeight),Rnd(7)+1

Next A

**¥* Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

166

7.Graphics

7.1.5 Boxing clever

BOX

Mode(s): Amiga/Blitz
Statement: draw a rectangular outline
Syntax: Box X1,Y1,X2,Y2,COLOUR

Rectangular outlines can be drawn on the currently used BitMap with the BOX statement. X1 and Y1 are
the coordinates of the top left-hand corner of the rectangle and X2 and Y2 are the coordinates of the
bottom right-hand corner. COLOUR is the colour of the outline; a COLOUR parameter of (-1) will cause
the rectangle to be inverted. For example:

; *** Boxing ring
; *** Filename - Box.bb2

BLITZ
; *** Open Blitz mode display
BitMap ©0,320,256,5
Slice 0,44,320,256,%$fff8,5,8,32,320,320
Show ©
;5 ¥** Alter palette
RGB 1,0,0,15
; ¥** Vertical boxes
For Y=0 To 256 Step 16
*** Horizontal boxes
For X=0 To 320 Step 16
; *** Toggle square colour
COL=1-COL
*** Draw square
Box X,Y,X+15,Y+15,COL
Next X
Next Y
; ¥** Wait for a mouse click
MouselWait
*¥** Return to Blitz Basic 2 editor
End

BOXF

Mode(s): Amiga/Blitz
Statement: draw a solid rectangle
Syntax: Boxf X1,Y1,X2,Y2,COLOUR

167

7.Graphics

BOXF is identical to the BOX statement except it is used to draw solid rectangular shapes, as opposed to
outlines. X1 and Y1 are the coordinates of the top left-hand corner of the rectangle and X2 and Y2 are
the coordinates of the bottom right-hand corner. COLOUR is the colour of the outline; a COLOUR
parameter of (-1) will cause the rectangle to be inverted.

Simple but effective screen wipes can be created with BOXF. Here is an example:

; *¥** Screen wipe
; ¥** Filename - Wipe.bb2

BLITZ
; *** Open 2 BitMaps for double-buffering
BitMap ©,320,DispHeight,3
Cls 7
BitMap 1,320,DispHeight,3
Cls 7
*** Define display Slice
Slice 0,44,320,256,%$fff8,3,8,8,320,320
Show ©
*** Starting co-ordinates for box
X1=160
X2=160
Y1=DispHeight/2
Y2=DispHeight/2
*** Main loop
Repeat
*** Draw rectangle
Boxf X1,Y1,X2,Y2,0
*** Decrease box size
Let X1-1
Let X2+1
Let Y1+l
Let Y2-1
*** Wait for Vertical Blank
Viait
*** Double-buffering routine
Show MAP : MAP=1-MAP : Use BitMap MAP
; ¥** Until co-ordinates meet
Until X1=0
; ¥** Return to Blitz Basic 2 editor
End

168

7.Graphics

7.1.6 Circle circus

CIRCLE

Mode(s): Amiga/Blitz

Statement: draw a circular or eliptical outline
Syntax: Circle X,Y,RADIUS,COLOUR

Syntax 2: Circle X,Y,RADIUS,YRADIUS,COLOUR

Drawing circles and elipses is very simple with Blitz Basic. Set the position of the centre of the circle
using X and Y, followed by the radius of the circle.

If the optional YRADIUS parameter is included then an elipse may be drawn instead. COLOUR is the
colour of the outline; a COLOUR parameter of (-1) will cause the circle to be inverted. The following
example generates a dual-playfield circle effect, reminiscant of the "Spaceballs: State Of The Art"
megademo:

; *** Demo circle effect
; *** Filename - Silly_Circles.bb2

BLITZ
; *** Open 2 BitMaps for double buffering
BitMap 0,640,512,3
BitMap 1,640,512,3
; *** Draw differently sized circles
For A=0 To 400 Step 10
Circle 320,250,400-A,Rnd(7)+1
Next A
; *** Clone BitMap graphics
CopyBitMap 1,0
Slice 0,44,320,256,%fffa,6,8,16,640,640
Repeat
ViWait
; *** Define circular path
X1=160+Sin(R)*160
Y1=128+Cos(R)*128
X2=160-5in(R)*160
Y2=128-Cos(R)*128
; *** Show foreground graphics
ShowF 1,X1,Y1,X2
; *** Show background graphics
ShowB ©,X2,Y2,X1
Let R+0.05
Until Joyb(©)>0
; ¥** Return to Blitz Basic 2 editor
End

169

7.Graphics

CIRCLEF

bn: Amiga/Blitz

Statement: draw a solid circle or elipse
Syntax: Circlef X,Y,RADIUS,COLOUR

Syntax 2: Circlef X,Y,RADIUS,YRADIUS,COLOUR

CIRCLEF works the same as CIRCLE except that it draws solid circles, as opposed to outlines.

If the optional YRADIUS parameter is included then an elipse may be drawn instead. COLOUR is the
colour of the outline; a COLOUR parameter of (-1) will cause the circle to be inverted. For example:

; ¥** Solid Circles
; *** Filename - Circlef.bb2

BLITZ
; *** Open BLITZ mode display
BitMap ©,320,256,5
Slice 0,44,5
Show ©
; *** Draw 100 random circles and ellipses
For A=1 To 100
Circlef Rnd(320),Rnd(256),Rnd(10)+5,Rnd(15)+2,Rnd(30)+1

Next A

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

7.1.7 Polygon power

POLY

Mode(s): Amiga/Blitz
Statement: draw multiple line
Syntax: Poly POINTS,COORDS.w,COLOUR

The POLY statement is another BitMap-based command which is used to draw multiple line objects. The
COORDS.w parameter contains the co-ordinates of each point to join up, from either an array or
NewType of words. In this way, complex outlines can be created using a single statement. COLOUR is
the colour of the polygon. For example:

170

7.Graphics

; *** Hyperspace
; *** Filename - Poly.bb2

NEWTYPE .HYP
; ¥** Define polygon co-ordinates
XOFF.w
YOFF
X1
Y1
End NEWTYPE
BLITZ
; *** Open 2 BitMaps for double buffering
BitMap 9,320,DispHeight,3
BitMap 1,320,DispHeight,3
Slice 0,44,3
Show ©
Mouse On
While Joyb(@)=0
Cls
; ¥** Wait for Vertical Blank
VWait
; *** Set polygon co-ordinates
A.HYP\XOFF=Rnd(320),Rnd(256),MouseX,MouseY
;5 *** Draw polygon
Poly 2,A,Rnd(7)+1
; *** Double-buffering routine
Show MAP : MAP=1-MAP : Use BitMap MAP
Wend
; ¥** Return to Blitz Basic 2 editor
End

POLYF

Mode(s): Amiga/Blitz
Statement: draw a solid polygon
Syntax: Polyf POINTS,COORDS.w,COLOUR[,COLOUR2]

POLYF is used to draw polygons and is the filled equivalent of POLY. The COORDS.w parameter contains
the co-ordinates of each point to join up, from either an array or NewType of words.

The optional COLOUR2 parameter, if included, will be used if the co-ordinates are listed in anti-
clockwise order. If COLOURRZ is equal to (-1) then the polygon will not be drawn if the vertices are listed
in anti-clockwise order. This is useful when designing three-dimensional objects to create depth. Here's
an example:

171

7.Graphics

; *** Polygon triangles
; *** Filname - Polyf.bb2

NEWTYPE .TRIG
; ¥** Define polygon co-ordinates
XOFF .w
YOFF
X1
Y1
X2
Y2
End NEWTYPE
BLITZ
; ¥** Open BLITZ mode display
BitMap ©,320,DispHeight,3
Slice 0,44,3
Show ©
; *** Repeat until mouse click
While Joyb(0)=0
ViWait
; ¥** Set polygon co-ordinates
A.TRIG\XOFF=Rnd(320),Rnd(256),Rnd(320),Rnd(256),Rnd(320),Rnd(256)
; *** Draw polygon
Polyf 3,A,Rnd(7)+1
Wend
; ¥** Return to Blitz Basic 2 editor
End

7.1.8 Fill her up!

FLOODFILL

Mode(s): Amiga/Blitz
Statement: fill a screen region with colour
Syntax: FloodFill X,Y,COLOUR[,BORDER]

The FLOODFILL statement will fill any part of the screen with a solid block of colour, starting at
coordinates X)Y. If the optional BORDER parameter is included then the filled region will be surrounded
by a border of that colour:

; *** Filling station
; *** Filename - FloodFill.bb2
BLITZ

; *** Open BLITZ mode display
BitMap ©,320,256,3

172

7.Graphics

Slice 0,44,3
Show ©
*** Fill screen ten times
For A=1 To 10
FloodFill 1,1,A
Next A
; *¥** Return to Blitz Basic 2 editor
End

; *** FloodFill example 2
; *** Filename - FloodFill2.bb2

BLITZ

; *** Open BLITZ mode display
BitMap ©,320,256,3
BitMapOutput ©

Slice 0,44,3

Show ©

Box 1,1,319,199,1

Repeat

*** Generate random colour
COL=Int(Rnd(5)+2)

**¥* Fill rectangle
FloodFill 50,50,COL,1
Locate 15,27

*** Pprint current colour
Colour COL
NPrint "Colour ",COL

Until Joyb(©)>0

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

FREEFILL

Mode(s): Amiga/Blitz
Statement: free 2D fill drawing memory
Syntax: FreeFill

Blitz Basic uses a single monochrome BitMap the size of the BitMap being used to calculate its filled
routines. FREEFILL will free any memory that Blitz uses to execute the commands BOXF, CIRCLEF and
FLOODFILL. Only use FREEFILL if you don't need access to any of these commands. For example:

173

7.Graphics

; *** FreeFill example
; *** Filename - FreeFill.bb2

BLITZ
; ¥** Open Blitz mode display
BitMap ©,320,256,3
Slice 0,44,3
Show ©
; ¥** Fill screen ten times
For A=1 To 10
FloodFill 1,1,A
Next A
; *** No more access to drawing commands!
FreeFill
; *¥** Tllegal access!
For A=1 To 10
FloodFill 1,1,A

Next A

; ¥** Wait for a mouse click
MouseWait

; ¥** End the show

End

7.2 Palettes

Palette objects, or palettes, are temporary storage areas of colour information. This information can be
taken either from an IFF (Interchangeable File Format) file or created from scratch. If colour information
is created by the user then it will not affect the current screen colours until the USE PALETTE statement
has been executed.

7.2.1 Loading a palette object

LOADPALETTE

Mode(s): Amiga
Statement: load a palette object
Syntax: LoadPalette PALETTE#,"FILENAME"[,OFFSET]

LOADPALETTE loads a palette object from disk. The "FILENAME" parameter specifies the name of an IFF
file (such as a DPaint picture) containing colour information. If the file contains colour cycling
information, then this will also be loaded into the palette object. LOADPALETTE will not affect currently
displayed colours until USE PALETTE is executed. For example:

174

7.Graphics

*** | oadPalette example
; ¥** Filename - LoadPalette.bb2
Screen 0,5,"Loading screen and palette”
F$="FILENAME.IFF"

*** Load IFF screen from disk
LoadScreen 0,F$

*** Load IFF screen's palette
LoadPalette 0,F$%
; *** Add screen's palette to display
Use Palette ©
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

7.2.2 Controlling palette objects

USE PALETTE

Mode(s): Amiga/Blitz
Statement: set current palette object
Syntax: Use Palette PALETTE#

This statement sets the specified palette object as the current palette object. USE PALETTE is used to
add the colours contained within a colour palette to the current display. Here is an example:

*** Use Palette example
; *** Filename - Use Palette.bb2

For A=1 To 10
*** Create custom palette

PalRGB ©,A,Rnd(7),Rnd(7),Rnd(7)
Next A

*** Open screen and grab its BitMap
Screen 0,3,"Colour screen"
ScreensBitMap 9,0
BitMapOutput ©
; ¥** Draw some BitMap graphics in default colours
For B=1 To 100

Circlef Rnd(320),Rnd(200)+30,Rnd(10)+5,Rnd(15)+3,Rnd(6)+1
Next B
Locate 0,2
NPrint "Before Use Palette"

*** Display custom palette
ViWait 100

175

7.Graphics

Use Palette ©
Locate 0,2
NPrint "After Use Palette "
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

SHOWPALETTE

Mode(s): Amiga/Blitz
Statement: display current palette object
Syntax: ShowPalette PALETTE#

The SHOWPALETTE statement displays a palette object in the current screen or Slice. SHOWPALETTE
must be executed after a palette object has been defined, otherwise it will not be visible. Here is an
example:

; *¥** ShowPalette example
*** Filename - ShowPalette.bb2

; *** Define a random palette
For A=0 To 10

PalRGB 0,A,Rnd(9),Rnd(9),Rnd(9)
Next A
; *** Open screen and grab its BitMap
Screen 0,3, "ShowPalette"
ScreensBitMap 0,0
; *** Add palette to display
ShowPalette ©
; ¥** Plot a random starfield
For B=0 To 100

Plot Rnd(320),Rnd(200)+20,Rnd(8)+1
Next B

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

NEWPALETTEMODE

Mode(s): Amiga/Blitz
Statement: set output of Use Palette
Syntax: NewPaletteMode On/Off

176

7.Graphics

NEWPALETTEMODE is used to enhance compatibility with older Blitz Basic 2 programs. If
NEWPALETTEMODE is set to (Off) then USE PALETTE will perform identically to SHOWPALETTE, and if it
is set to (On) then USE PALETTE will perform as normal. This is because the USE PALETTE statement has
been updated - and indeed superceeded - by the SHOWPALETTE statement.

FREE PALETTE

Mode(s): Amiga/Blitz
Statement: erase a palette object
Syntax: Free Palette PALETTE#

FREE PALETTE erases the contents of the palette object specified by PALETTE#. It does not affect the
current display colours. Example:

; *** Free Palette example
; *** Filename - Free_Palette.bb2

; *** Define a random palette
For A=0 To 10

PalRGB ©,A,Rnd(9),Rnd(9),Rnd(9)
Next A
; *** Open screen and grab its BitMap
Screen 9,3, "ShowPalette"
ScreensBitMap 9,0
; *¥** Add palette to display
ShowPalette ©
; ¥** Plot a random starfield
For B=0 To 100

Plot Rnd(320),Rnd(200)+20,Rnd(8)+1
Next B
; ¥** Remove palette
Free Palette ©
Cls o
; ¥** Plot another random starfield
For B=0 To 100

Plot Rnd(320),Rnd(200)+20,Rnd(8)+1

Next B

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

177

7.Graphics

7.2.3 Manipulating palettes

PALRGB

Mode(s): Amiga/Blitz
Statement: set a colour register within a palette object
Syntax: PalRGB PALETTE#,REGISTER,RED,GREEN,BLUE

The PALRGB statement allows you to set an individual colour register within a palette object. Values for
REGISTER are taken from the Amiga's standard 32 colour registers. The colour change will not become
evident until the USE PALETTE statement is used. Try the following example:

; *** PalRGB example
; *** Filename - PalRGB.bb2

; *** Define random colour palette
PalRGB ©,0,Rnd(7),Rnd(7),Rnd(7)
PalRGB ©,1,Rnd(15),Rnd(15),Rnd(15)
PalRGB 0,2,0,0,0

;5 *** Open screen (3 bitplanes)
Screen 0,3,"Colour screen"

; *** Add colour palette to display
Use Palette ©

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

RGB

Mode(s): Amiga/Blitz
Statement: set a colour register to an RGB colour value
Syntax: RGB REGISTER,RED,GREEN, BLUE

RGB allows you to set an individual colour register in a palette to an RGB colour value. Values for
REGISTER are taken from the Amiga's standard 32 colour registers. RGB does not affect palette objects.
For example:

178

7.Graphics

; *** RGB example
; *¥** Filename - RGB.bb2

BLITZ
; ¥** Open BLITZ mode display
BitMap 0,320,256,3
Slice 0,44,3
Show ©
*** Change colour register @, 15 times
For A=1 To 15
RGB @,Rnd(15),Rnd(15),Rnd(15)
Viait 20
Next A
*** Return to Blitz Basic 2 editor
End

The RED, GREEN and BLUE statements return the amount of their respected colour in a specified colour
register. The returned values range from zero to 15.

RED

Mode(s): Amiga/Blitz
Function: return the amount of RGB red in a colour register
Syntax: r=Red (REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. For example:

; *** Red example
; *¥** Filename - Red.bb2

; ¥** Open screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput ©
*¥** Set red to 8
RGB ©0,8,0,0
Locate 0,3
; ¥** Returns "8"
NPrint "Red = ",Red(0)
*** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End

179

7.Graphics

GREEN

Mode(s): Amiga/Blitz
Function: return the amount of RGB green in a colour register
Syntax: g=Green (REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. For example:

; *** Green example
*** Fjilename - Green.bb2

*** QOpen screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput ©
; *¥** Set green to 10
RGB 0,0,10,0
Locate 0,3
; *¥** Returns "10"
NPrint "Green = ",Green(®)
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

BLUE

Mode(s): Amiga/Blitz
Function: return the amount of RGB blue in a colour register
Syntax: b=Blue(REGISTER)

Values for REGISTER are taken from the Amiga's standard 32 colour registers. Here is an example:

; ¥** Blue example
*** Filename - Blue.bb2

*** QOpen screen and grab its BitMap
Screen 0,3
ScreensBitMap 0,0
BitMapOutput ©
; ¥** Set blue to 14
RGB 0,0,0,14
Locate 0,3
; *¥** Returns "14"
NPrint "Blue = ",Blue(0)

180

7.Graphics

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

7.3 Fades

The Blitz Basic fade commands can be used to create impressive screen wipes and transitions. Here's a
brief overview...

7.3.1 Fading into and out of reality

FADEIN

Mode(s): Blitz
Statement: fade in a colour palette
Syntax: FadeIn PALETTE#[,RATE][,LOW,HIGH]

The FADEIN statement is used to fade in the palette of the current Slice from black, to the RGB values in
PALETTE#. The optional RATE parameter allows you to control the speed of the fade (0 is the fastest
fade). The optional LOW and HIGH parameters allow you to control which palette registers are affected
by the fade. All palette registers between the values of LOW and HIGH will fade in. Consult the
FADEOUT example.

FADEOUT

Mode(s): Blitz
Statement: fade out a colour palette
Syntax: FadeOut PALETTE#[,RATE][,LOW,HIGH]

The FADEOUT statement is used to fade out the palette of the current Slice from the RGB values in
PALETTE#, to black. The optional RATE parameter allows you to control the speed of the fade (0 is the
fastest fade). The optional LOW and HIGH parameters allow you to control which palette registers are
affected by the fade. All palette registers between the values of LOW and HIGH will fade out.

Try the following example:

; ¥** Fading Example
; ¥** Filename - Fade.bb2

SPEED=2

BitMap ©,320,256,4

; ¥** Load IFF file to fade in
LoadBitMap ©,"FILENAME.IFF",0
BLITZ

Slice 0,44,4

181

7.Graphics

; ¥** Set all colours to black
For A=0 To 15
RGB A,0,0,0
Next A
Show ©
; ¥** Fade in image
VWait 100
FadeIn ©,SPEED
; *** Fade out image
VWait 100
FadeOut ©,SPEED
VWait 100
; ¥** Return to Blitz Basic 2 editor
End

7.3.2 Manual fading

If Blitz Basic's automatic fading isn't to your satisfaction then why not try the more powerful manual
fading commands. These allow you much more control over the speed of the fade and enable you to
synchronise screen fading with program execution.

ASYNCFADE

Mode(s): Amiga/Blitz
Statement: control palette fading
Syntax: ASyncFade On/Off

ASYNCFADE controls how the above fade commands operate. Normally, FADEIN and FADEOUT will halt
program execution, fade, and then continue program execution (ASYNCFADE OFF - the default mode).
ASYNCFADE ON switches this auto-fade off and DOFADE must be executed to perform the next step of
the fade.

DOFADE

Mode(s): Blitz
Statement: execute the next step of a fade
Syntax: DoFade

The DOFADE statement executes the next step of a fade. It must be called after one of the above fade
commands.

182

7.Graphics

FADESTATUS

Mode(s): Blitz
Function: return number of remaining fade steps
Syntax: f=FadeStatus

FADESTATUS may be used in conjunction with the DOFADE statement to determine whether or not
there are any more fade steps to execute. If a fade has finished then (0) is returned, and if there are fade
steps left then (-1) is returned.

Here is a complete manual fade example:

; ¥** Manual fading
; ¥** Filename - DoFade.bb2

SPEED=2
BitMap ©,320,256,4
; ¥** Load IFF file to fade in
LoadBitMap ©,"FILENAME.IFF",0
BLITZ
Slice 0,44,4
; *** Set all colours to black
For A=0 To 15
RGB A,0,0,0
Next A
;5 ¥** Turn manual fading on
ASyncFade On
Show ©
BitMapOutput ©
FadelIn 0,1
; *** Fade in picture
Repeat
DoFade
Let B+1
Locate 0,0
Print "Fade step ",B
Viait 20
Until FadeStatus=0
; ¥** Return to Blitz Basic 2 editor
End

7.4 Colour cycling

If you are familiar with the Deluxe Paint series of programs then you will probably already know about
the simplest form of colour cycling. This type makes each of the colours in the colour palette change
places, or cycle.

183

7.Graphics

SETCYCLE

Mode(s): Amiga
Statement: define colour cycling for a specified palette
Syntax: SetCycle PALETTE#,CYCLE#,LOW,HIGH[,SPEED]

The SETCYCLE statement is used to define colour cycling information for the CYCLE statement.
PALETTE# is the number of the palette to cycle. You may define a maximum of seven different colour
cycles for a single palette, each determined by a unique CYCLE# number. All palette registers between
the values of LOW and HIGH will cycle. The optional SPEED parameter specifies the speed of the cycle,
either (-1) or (1); a negative value will cycle the colours in reverse. For example:

; *¥** SetCycle example
; *** Filename - SetCycle.bb2

Screen 0,5

F$="FILENAME.IFF"

; ¥** Load IFF file and colour information
LoadScreen 0,F$

LoadPalette O,F$%

; *** Add colour palette to display
Use Palette ©

; *¥** Cycle backwards

SetCycle 0,0,1,10,-1

Cycle o

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

CYCLE

Mode(s): Amiga
Statement: execute defined colour cycling
Syntax: Cycle PALETTE#

CYCLE is used to execute the colour cycling information defined with SETCYCLE. PALETTE# is the
number of the palette to cycle. Here is an example:

; ¥** A nice day for a Cycle
; *** Filename - Cycle.bb2

Screen 0,5
F$="FILENAME.IFF"

184

7.Graphics

*** Load IFF file and colour information
LoadScreen 0,F$
LoadPalette 0,F$%
; *** Add colour palette to display
Use Palette ©

¥¥* Cycle palette
Cycle o

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

STOPCYCLE

Mode(s): Amiga
Statement: stop defined colour cycling
Syntax: StopCycle

The STOPCYCLE statement stops all colour cycling in its tracks. For example:

*k** StopCycle example
; *** Filename - StopCycle.bb2

Screen 0,5
F$="FILENAME.IFF"

*** |Load IFF screen and colour information
LoadScreen 0,F$
LoadPalette 0,F$
; *** Add colour palette to display
Use Palette ©

*** Cycle colour palette
Cycle 0
MouselWait
; *¥** Stop colour palette cycling
StopCycle
ViWait 100
; *¥** Return to Blitz Basic 2 editor
End

7.5 Copper Lists

The Amiga's co-processor, or Copper, is used to generate subtly coloured "rainbow" backgrounds, and
to create special display effects. Because the Copper works in parallel it can execute instructions at the
same time as the main processor.

185

7.Graphics

7.5.1 Copper load of this

COLSPLIT

Mode(s): Amiga/Blitz
Statement: control palette colour registers
Syntax: ColSplit REGISTER,RED,GREEN,BLUE,Y

If you've ever marvelled at the colourful “rainbows" that seem to be part of every platform game or
demo, and wondered how to create them in Blitz Basic then look no further.

The COLSPLIT statement is used to change the palette colour registers at a position relative to the top
of the current Slice. As will be explained in the next chapter, the Amiga's hardware provides 32 colour
registers. However, only colour registers zero through 15 can be affected by COLSPLIT. In practice, this
colour can be assigned a different value for each horizontal scan line, to create really smooth colour
graduations.

RED, GREEN and BLUE are the RGB components of the colour register, and the Y parameter specifies a
vertical offset from the top of the Slice. Here are some examples:

; *** Simple copper - planet mars
; *** Filename - ColSplitl.bb2

BLITZ
; *** Open BLITZ mode display (1 bitplane)
BitMap ©,320,260,1
Slice 0,44,320,260,%fff8,1,8,2,320,320
Show ©
; *** Define colour registers 1 through 11
For A=1 To 11
Colsplit ©,A,0,A,A*20
Next
; *** Define colour register ©
ColSplit 0,0,0,0,260
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

The second example gives a useful demonstration of how the copper instructions can be used to
generate "rainbow text". This is where a copper list is placed behind a text string to create multi-colour
text. To produce rainbow text, the text must be generated using the same colour register as is affected
by COLSPLIT (the copper list must also be placed at the same y co-ordinate as the text!):

186

7.Graphics

; ¥** ColSplit example 2
; *** Filename - ColSplit2.bb2

BLITZ
; *** Open BLITZ mode display (1 bitplane)
BitMap ©,320,256,1
Slice 0,44,320,256,$fff8,1,8,2,320,320
Show ©
BitMapOutput ©
For A=0 To 7
ColSplit 0,A,A,AA
Next A
*** Generate upper rainbow
For B=8 To 15
ColSplit @,15-B,15-B,15-B,B
Next B
For C=0 To 7
ColSplit o,C,C,C,55+C
Next C
; *** Generate lower rainbow
For D=8 To 15
ColSplit ©,15-D,15-D,15-D,55+D
Next D
For E=0 To 7
ColSplit 1,E,0,E,20+E*3
Next E
; *¥** Text message to display between rainbows
Locate 1,4
Print "Cool copper bars Blitz Basic 2 stylel”
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

7.5.2 Custom copper lists

If the COLSPLIT statement is not powerful enough for your needs then why not take a look at the other
Copper-based statement, CUSTOMCOP. This allows the advanced Blitz Basic programmer to introduce
custom copper instructions.

CUSTOMCOP

Mode(s): Amiga/Blitz
Statement: create custom copper lists
Syntax: CustomCop SOURCE$,Y

187

7.Graphics

The CUSTOMCOP statement is used to execute custom copper instructions at a specified position from
the top of the display. SOURCE$ is a string of characters equivalent to a series of copper instructions.
The Y parameter is the y offset of the copper list. Custom copper lists are not for the faint hearted! Try
the following example:

; *** CustomCop example
; ¥** Filename - CustomCop.bb2

BLITZ
; ¥** Some hardware trickery
#BPLMOD1=$108
#BPLMOD2=$10A
*** Open BLITZ mode display
BitMap ©,640,256,3
Slice 0,44,320,256,%FFF8,3,8,32,640,640
Show ©

*** Create mountain landscape
RGB 2,9,0,0
Y=100 : LAND=3 : DI=-1
For X=0 To 640
D=Int(Rnd(LAND))
If D=1 Then DI=-1
If D=2 Then DI=1
Let Y+DI
If Y<O Then Y=0
If Y>356-1 Then Y=355
Line X,356,X,Y,2
Next X

*** Mirror mountain
ColsSplit 2,0,0,8,150
CO$=Mki$ (#BPLMOD1)+Mki$(-122)
CO$+Mki$ (#BPLMOD2)+Mki$(-122)
CustomCop C0$,150+44

; ¥** Scroll display
For X=0 To 320
ViWait
Show ©,X,0
Next X
; *** Return to Blitz Basic 2 editor
End

188

7.Graphics

7.5.3 Copper list functions
The following functions are used to obtain information about the Blitz mode copper list.

COPLOC

Mode(s): Amiga/Blitz
Function: return the memory address of Blitz mode copper list
Syntax: c=CoplLoc

Blitz Basic merges all Slices and copper lists into a single copper list. The COPLOC function returns the
memory address of the Blitz mode copper list. For example:

; *** CoplLoc example
; *** Filename - CopLoc.bb2

BLITZ
; *** Open BLITZ mode display
BitMap 0,320,260,1
Slice 0,44,320,260,%$fff8,1,8,2,320,320
Show @
BitMapOutput ©
; *** Create a simple copper list
For A=1 To 10
ColSplit 1,A,A,A,A*2

Next
; *** Output address of copper list
Locate 0,1

NPrint Coploc

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

COPLEN

Mode(s): Amiga/Blitz
Function: return the length of Blitz mode copper list
Syntax: c=CoplLen

Blitz Basic merges all Slices and copper lists into a single copper list. COPLEN returns the length, in
bytes, of the Blitz mode copper list. Try the following example:

189

7.Graphics

; *** CoplLen example
; *** Filename - CoplLen.bb2

BLITZ
; ¥** Open BLITZ mode display
BitMap 0,320,260,1
Slice 0,44,320,260,$fff8,1,8,2,320,320
Show ©
BitMapOutput ©
; ¥** Qutput length, in bytes, of copper list
NPrint CopLen," bytes before rainbow."
ViWait 100
Cls

*** Create simple copper list
For A=1 To 11

ColSplit 0,0,A,A,A*20
Next
ColSplit o,0,0,0,260
; ¥** Output new length of copper list
Locate 0,0
NPrint CopLen," bytes after rainbow."
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

7.6 IFF Animation

Blitz Basic can also display full-screen IFF animations, such as those created with the suberb Deluxe
Paint IV program. Remember that, the larger the animation, and the more colours involved, the more
memory intensive the animation will be! Animations with fewer colours do tend to run faster when
displayed using the powerful Blitz Basic animation commands. Here's how...

7.6.1 Animated antics

LOADANIM

Mode(s): Amiga
Statement: load an IFF animation into memory
Syntax: LoadAnim ANIM#,"FILENAME"[,PALETTE#]

The LOADANIM statement is used to load an IFF animation into memory. In order to create the correct
screen size and resolution for the animation you may use the ILBMINFO statement. The optional
PALETTE# parameter can be used to load the animation's colour palette into memory. Try the following
example:

190

7.Graphics

*** |loading Animations
; ¥** Filename - LoadAnim.bb2

F$="FILENAME.ANIM"

; ¥** Analyse animation

ILBMInfo F$

; *** Open screen to animation dimensions

Screen 0,0,0,ILBMWidth,ILBMHeight, ILBMDepth,ILBMViewMode,"",1,2
*** Grab screen's BitMap

ScreensBitmap 0,0

Bitmap 1,ILBMWidth,ILBMHeight,ILBMDepth

; ¥** Load animation

LoadAnim ©,F$%,0

Use Palette ©

; ¥** Wait for a mouse click

MouseWait

; ¥** Return to Blitz Basic 2 editor

End

INITANIM

Mode(s): Amiga/Blitz
Statement: initialise animation
Syntax: InitAnim ANIM#[,BITMAP#]

INITANIM renders the first frame of the animation onto the current BitMap and, if the optional BITMAP#
parameter is included, renders the second frame onto the specified BitMap. This is for creating flicker-
free double-buffered animations. For example:

5 ¥** InitAnim example
*** Filename - InitAnim.bb2

F$="FILENAME.ANIM"

; *** Analyse animation

ILBMInfo F$
*** Open screen to animation dimensions

Screen 0,0,0,ILBMNidth,ILBMHeight, ILBMDepth, ILBMViewMode,"",1,2
*** Grab screen's BitMap

ScreensBitMap 0,0

BitMap 1,ILBMWidth,ILBMHeight,ILBMDepth

; ¥** L oad animation

LoadAnim ©,F$%,0

Use Palette ©

; *** Render 1st and 2nd frames of animation

InitAnim 0,0

; ¥** Wait for a mouse click

191

7.Graphics

MouseWait
; ¥** Return to Blitz Basic 2 editor
End

NEXTFRAME

Mode(s): Amiga/Blitz
Statement: draw next animation frame
Syntax: NextFrame ANIM#

Rendering of frames to the current BitMap is achieved through the use of the NEXTFRAME statement. If
the last frame of the animation has been rendered NEXTFRAME will automatically loop back to the
beginning of the animation. Here is an example:

*** NextFrame example
*** Fjlename - NextFrame.bb2

*** Repeat until mouse click
While Joyb(@)=0
*** Double buffering routine
ShowBitMap DB
VWait SPEED
DB=1-DB
Use BitMap DB
*** |l oop back to beginning of animation
NextFrame ©
Wend
*** Return to Blitz Basic 2 editor
End

FRAMES

Mode(s): Amiga/Blitz
Function: return the number of frames in an animation
Syntax: f=Frames (ANIMATION)

The FRAMES function simply returns the number of frames in a specified animation. This is useful if, for
example, you want to stop an animation before it loops. For example (load an animation into memory
prior to the following code):

; *** Frames example
*** Filename - Frames.bb2

F=Frames(9)

192

7.Graphics

A=1
; *** Repeat until last frame is reached
While A<=F
*** Double buffering routine
ShowBitmap DB
ViWait
DB=1-DB
Use Bitmap DB
*** Next frame of animation
NextFrame ©
Let A+l
Wend
*** Return to Blitz Basic 2 editor
End

7.6.2 A full example

The following example is a general-purpose animation viewer. It uses the double-buffering technique
explained above to create perfect, flicker-free animations. Remember to insert your own filename into
F$. Example:

*** Displaying an animation
*** Filename - Animation_example.bb2

F$="FILENAME.ANIM"
SPEED=1 ; *** Frame delay
*** Analyse animation
ILBMInfo F$
*** Open screen to animation dimensions
Screen 0,0,0,ILBMWidth,ILBMHeight, ILBMDepth,ILBMViewMode,"",1,2
*** Grab screen's BitMap
ScreensBitMap 0,0
BitMap 1,ILBMWidth,ILBMHeight,ILBMDepth
*** Load animation
LoadAnim ©,F$,0
Use Palette ©
*¥** Tnitialise animation
InitAnim 0,0
While Joyb(0)=0
; *** Double buffering routine
ShowBitMap DB
VWait SPEED
DB=1-DB
Use BitMap DB
*** Next frame of animation
NextFrame ©
Wend
*** Return to Blitz Basic 2 editor
End

193

7.Graphics

7.7 End-of-Chapter summary

Pixels are the thousands of tiny elements which make up the Amiga's display. Single pixels are plotted
using the PLOT statement. Pixel colours are read using the POINT statement.

Table 7.1 : 2D drawing commands

Shape Command
Square BOX/BOXF
Rectangle BOX/BOXF
Circle CIRCLE/CIRCLEF

Ellipse CIRCLE/CIRCLEF
Polygon POLY/POLYF

Palettes are temporary storage areas of colour information. This information can be taken either from
an IFF (Interchangeable File Format) file or created from scratch using PALRGB or RGB.

The COLSPLIT statement is used manipulate the Copper chip in order to create colour rainbows. Custom
copper lists can be created with the CUSTOMCOP statement. The Copper can be programmed to mirror
text, stretch graphics and clone images. For a full example of custom copper lists please consult
Appendix 2.

Blitz Basic can display and manipulate standard Deluxe Paint animations. Remember that, the larger the
animation, and the more colours involved, the more memory intensive the animation will be!
Animations with fewer colours do tend to run faster when displayed in Blitz.

194

Chapter 8 : Sprites and Shapes

This chapter covers the manipulation of sprites and shape objects in Blitz Basic 2. It will also show you
the finer points of collision detection. Here goes...

8.1 Sprites

What is a sprite? Well, it's an object which can move across the screen - a monster or car -
independently of other objects or the background. Sprites are initialised by either loading them from
disk, or by converting a shape object into a sprite object using the GETASPRITE statement.

Sprites are handled entirely by the Amiga's hardware so they do not interfere or corrupt BitMap
graphics in any way. Basically this means that sprites do not have to be erased manually when they are
moved. However, there are some limitations that must be observed when using sprites:

® Sprites are only available in Blitz mode
® Sprites must be of either three or 15 colours (two/four bitplanes)

The resolution of all sprites corresponds to the lowest screen resolution (i.e. 320*200 or 320*256 pixels).
Sprite co-ordinates are also always given in the lowest resolution (320*200 or 320*256).

Slices can display a maximum of eight sprites. This is because sprites are displayed by the Amiga's eight
sprite channels, numbered (0) through (7).

If you are displaying a three-colour sprite, you may specify any of the eight sprite channels (0 through
7). However, if you are displaying a 15-colour sprite, you may only specify an even-numbered sprite
channel (e.g. 0,2,4 or 6). Because 15-colour sprites require two sprite channels, they also need to use the
associated odd-numbered sprite channel. For example, displaying a 15-colour sprite through sprite
channel (2) will make sprite channel (3) unavailable.

The Amiga's hardware limits individual sprites to a maximum width of 16 low-resolution pixels. All
sprites are therefore 16 pixels wide and have selectable height. However, Blitz Basic allows you to
display sprites of greater width by splitting a shape up into groups of sixteen pixels. This means that a
sprite may take up more than one sprite channel.

The number of sprite channels needed can be worked out using the following formulae:

For 3-colour sprites use : CHANNELS=(WIDTH/16)
For 15-colour sprites use : CHANNELS=(WIDTH/16) * 2

For example, a 32 pixel wide 3-colour sprite displayed through sprite channel (2) will actually be
converted to two 16 pixel wide sprites displayed through channels (2) and (3) - (32 pixels wide/16 = two
sprite channels).

Similarly, a 48 pixel wide 15-colour sprite displayed through sprite channel (0) will take up sprite
channels (0) through (5) - ((48 pixels wide/16) * 2 = six sprite channels!).

All sprite colours are taken from the Amiga's standard 32 colour registers, but the number of registers
needed depend on the number of colours and the sprite channels involved.

195

8.Sprites and Shapes

Fifteen-colour sprites take their RGB values from colour registers 17 through 31. These are initially taken
from the current Slice palette, but can be altered using the RGB statement. This means that, to display a
15-colour sprite on a 32 colour Slice, you would create your background or palette in 32-colour mode,
and draw your sprites using colour numbers 17 to 31 only. When you come to display your sprites they
will be drawn the correct colour.

Three-colour sprites, however, take on RGB values depending upon the sprite channels being used to
display them. Each pair of three-colour sprite channels (0/1,2/3,4/5 and 6/7) use the same colour
registers for definition of sprite colours. The following table shows the colour register assignment:

Table 8.1 : Sprite colour registers

Sprite channel Transparent Colour registers

0,1 16 17-19
2,3 20 21-23
4,5 24 25-27
6,7 28 29-31

Note that for each pair of sprites there is one register that is transparent, and three colour registers. So,
to display a three-colour sprite on a 32 colour Slice, you would draw your sprites using colour numbers
17 to 19 only.

8.1.1 Loading sprites from disk

LOADSPRITES

Mode(s): Amiga
Statement: load a range of sprites from disk
Syntax: LoadSprites FIRST[,LAST],"FILENAME"

The LOADSPRITES statement is used to load a range of sprites into memory from disk. The FIRST
parameter is the number of the first sprite to load from a previously created sprite bank, and the
optional LAST parameter specifies the number of the last sprite to load. Try the following example:

; *** LoadSprites example
; *** Filename - LoadSprites.bb2

LoadSprites ©,"SPRITES"
BitMap ©,320,256,4

BLITZ

Slice 0,44,4

Show ©

ShowSprite 0,150,100,0

; ¥** Wait for a mouse click
MouseWait

196

8.Sprites and Shapes

**¥* Return to Blitz Basic 2 editor
End

8.1.2 Saving sprites to disk

SAVESPRITES

Mode(s): Amiga
Statement: save a range of sprites to disk
Syntax: SaveSprites FIRST,LAST,"FILENAME"

This statement is used to save a range of sprites to disk from memory. The FIRST parameter is the
number of the first sprite to save from a sprite bank held in memory, and the LAST parameter specifies
the number of the last sprite to save

**¥* SaveSprites example
*** Filename - SaveSprites.bb2

BitMap ©,320,256,4
Boxf 0,0,20,20,3
GetaShape 0,0,0,20,20
GetaSprite 0,0
SaveSprites 0,0,"RAM:SPRITE"
Cls
Free Sprite ©
LoadSprites ©,"RAM:SPRITE"
BLITZ
Slice 0,44,4
Show ©
ShowSprite 0,150,100,0

*** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

8.1.3 Sprite commands

SHOWSPRITE

Mode(s): Amiga/Blitz
Statement: display a Sprite on the screen
Syntax: ShowSprite SPRITE#,X,Y,CHANNEL

This statement puts a hardware sprite on the screen, whose resolution corresponds to the current
screen resolution. The X and Y parameters specify the coordinates of the sprite (in low-resolution pixels

197

8.Sprites and Shapes

only). The Amiga hardware sprites can be controlled using channel numbers 0-7. Here is an example:

; *** ShowSprite example
*** Filename - ShowSprite.bb2

BitMap ©,320,256,4
Circle 10,10,9,3
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
BLITZ
Slice 0,44,4
Show ©
For X=0 To 320

VWait

ShowSprite 0,X,20,0
Next X
; ¥** Return to Blitz Basic 2 editor
End

GETASPRITE

Mode(s): Amiga/Blitz
Statement: convert shape object to a sprite object
Syntax: GetaSprite SPRITE#,SHAPE#

The GETASPRITE statement converts a shape object to a sprite object. SHAPE# is the number of a
previously initialised shape object to convert and SPRITE# is the number of the destination sprite object.
For example:

*k** GetaSprite example
; *** Filename - GetaSprite.bb2

BitMap ©,320,256,2
Boxf 0,0,63,63,2
GetaShape 0,0,0,32,32
GetaSprite 0,0
Free Shape ©
Cls
BLITZ
Slice 0,44,2
Show ©
For A=0 To 3
RGB A*4+17,15,15,0
RGB A*4+18,15,8,0
RGB A*4+19,15,4,0
Next A

198

8.Sprites and Shapes

For X=0 To 320
VWait
ShowSprite 0,X,20,0
Next X
; *** Return to Blitz Basic 2 editor
End

INFRONT

Mode(s): Amiga/Blitz
Statement: convert sprite display to infront/behind a BitMap
Syntax: InFront CHANNEL

One of the great features of hardware sprites is that they may be displayed in front of or behind any
BitMap graphics. The INFRONT statement is used to convert sprite display to infront/behind BitMaps.
CHANNEL must be an even number of value 0, 2, 4, 6 or 8. Sprites displayed using sprite channels
greater than or equal to CHANNEL will appear behind any BitMap graphics, whilst those less than
CHANNEL will appear in front:

;5 ¥** Using InFront
; *** Filename - InFront.bb2

; ¥*¥* ... Create sprite here
InFront 4
; ¥** ... Insert display routines

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

In the above example (pseudo code only), sprites 4, 5, 6 and 7 will appear
behind and sprites 0, 1, 2 and 3 will appear in front. Here is a full
example:

; ¥** InFront example
; *** Filename - InFront2.bb2

PalRGB 0,1,15,0,15
BitMap ©,320,256,2
Boxf 0,0,63,63,1
GetaShape 0,0,0,64,64
GetaSprite 0,0

Cls

BitMapOutput ©

Locate 10,10

For WORDS=1 To 50

199

8.Sprites and Shapes

Locate Rnd(30)+5,Rnd(20)+3
Print "Hello"
Next WORDS
BLITZ
Slice 0,44,2
Show ©
Use Palette ©
For A=0 To 3
RGB A*4+17,15,15,0
RGB A*4+18,15,8,0
RGB A*4+19,15,4,0
Next A
InFront 4
For X=0 To 320
ViWait
ShowSprite 0,X,20,0
ShowSprite 0,X,120,4
Next X
; ¥** Return to Blitz Basic 2 editor
End

Note that you should only use the INFRONT statement with single-playfield Slices. If you want to create
some dual-playfield Slice magic then use the following two commands.

INFRONTF

Mode(s): Amiga/Blitz
Statement: dual playfield version of InFront (foreground)
Syntax: InFrontF CHANNEL

The INFRONTF statement is used with dual-playfield Slices to control sprite/playfield priority with
respect to the foreground playfield. CHANNEL must be an even number of value 0,2,4,6 or 8. Sprites
displayed using sprite channels greater than or equal to CHANNEL will appear behind any BitMap
graphics, whilst those less than CHANNEL will appear in front.

INFRONTB

Mode(s): Amiga/Blitz
Statement: dual playfield version of InFront (background)
Syntax: InFrontB CHANNEL

The INFRONTB statement is used with dual-playfield Slices to control sprite/playfield priority with
respect to the background playfield. CHANNEL must be an even number of value 0,2,4,6 or 8. Sprites
displayed using sprite channels greater than or equal to CHANNEL will appear behind any BitMap
graphics, whilst those less than CHANNEL will appear in front:

200

8.Sprites and Shapes

*** InFrontF/InFrontB example
*** Filename - InFrontB.bb2

BitMap 1,320,256,2
Boxf 80,50,240,150,3
BitMap ©,320,256,2
Boxf 0,0,63,63,1
GetaShape 0,0,0,32,32
GetaSprite 0,0
Free Shape ©
Cls
Circlef 160,100,90,3
Circlef 160,100,50,0
BLITZ
Slice 0,44,320,256,%$fff2,4,8,32,320,320
ShowF ©
ShowB 0,10,0
For A=0 To 3
RGB A*4+17,15,15,0
RGB A*4+18,15,8,0
RGB A*4+19,15,4,0
Next A
InFrontF 4
InFrontF 2
InFrontB 4
For X=0 To 320
ViWait
ShowSprite 0,X,20,0
ShowSprite 0,X,80,2
ShowSprite 0,X,140,4
Next X
; ¥** Return to Blitz Basic 2 editor
End

8.2 Shapes

The Amiga range of computers have access to an extremely powerful graphic shifter called the Blitter
chip. Blitter Objects, or "Bobs" for short, are images which can be displayed on screen with lightning
speed, but must be displayed and updated by the user to avoid graphic corruption. For reasons know
only to Acid Software, Blitz Basic refers to these Bobs as shapes, or shape objects. These shape objects
may be used in a variety of different ways, such as gadgets, menu items or game graphics.

Many commands are available for the purpose of drawing shapes onto a BitMap. These commands use
the Amiga's blitter chip to achieve this, and are therefore very fast. The process of putting a shape onto
a BitMap using the blitter is often referred to as "blitting" a shape.

The blitting speed of a shape is affected by its size and the blitting technique (in Blitz Basic there are
three main blitting techniques). Obviously, larger shapes take longer to "blit" than smaller ones. Also,
shapes with more colours take longer to blit.

201

8.Sprites and Shapes

The technique used to draw a shape also affects its speed. The fastest blitting command is the BLIT
statement, however this provides no way of erasing the shape to allow for movement. QBLIT allows for
movement, but it does corrupt BitMap graphics in the process. The most powerful blitting command,
BBLIT, is also the slowest, as it allows for movement and doesn't corrupt any BitMap graphics.

8.2.1 Loading and saving shapes

LOADSHAPE

Mode(s): Amiga
Statement: load an IFF file into a shape object
Syntax: LoadShape SHAPE#,"FILENAME"[,PALETTE#]

This statement loads an IFF file (such as a DPaint picture) into a shape object. The optional PALETTE#
parameter is used to load the colour information contained in the file into a palette object. Here is an
example:

; *** LoadShape example
; *** Filename - LoadShape.bb2

Screen 0,3

ScreensBitMap 0,0

LoadShape ©,"A SHAPE.IFF",0

Use Palette ©

Blit 0,30, 30

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

SAVESHAPE

Mode(s): Amiga
Statement: save a shape object to an IFF file
Syntax: SaveShape SHAPE#,"FILENAME"[,PALETTE#]

SAVESHAPE saves the information contained in a shape object into an IFF file. The optional PALETTE#
parameter allows you to save the shape's colour information as well. For example:

; *** SaveShape example
; *** Filename - SaveShape.bb2
BLITZ

BitMap ©,320,256,5
Slice 0,44,5

202

8.Sprites and Shapes

Show ©
BitMapOutput ©
For A=1 To 50
Locate Rnd(39),Rnd(20)
Colour Rnd(30)+1,Rnd(30)+1
NPrint "Totally flipped!"
Next A
GetaShape 0,0,0,320,200
QAMIGA
SaveShape 0, "RAM:SHAPE.IFF"
Cls
LoadShape 0, "RAM:SHAPE.IFF"
Blit 0,0,0
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

LOADSHAPES

Mode(s): Amiga
Statement: load a range of shapes from disk
Syntax: LoadShapes FIRST,[,LAST],"FILENAME"

The LOADSHAPES statement is used to load a range of shapes into memory from disk. The FIRST
parameter specifies the number of the first shape object to be loaded. If the optional LAST parameter is
included then only the shapes up to and including this value will be loaded:

; *** LoadShapes example
;5 *** Filename - LoadShapes.bb2

LoadShapes 0, "SHAPES"

BLITZ

BitMap ©,320,256,5

Slice 0,44,5

Show ©

Use Palette ©

; ¥** Blit first shape in range

Blit 0,0,0

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

203

8.Sprites and Shapes

SAVESHAPES

Mode(s): Amiga
Statement: save a range of shapes to disk
Syntax: SaveShapes FIRST,LAST,"FILENAME"

SAVESHAPES is used to save a range of shapes to disk. The FIRST parameter specifies the number of the
first shape object to be saved, and the LAST parameter specifies the number of the last shape object to
be saved. Here's an example:

; *** SaveShapes example
; *** Filename - SaveShapes.bb2

BLITZ

BitMap ©0,320,256,3

Slice 0,44,3

Show ©

Boxf 0,0,10,10,2

GetaShape 0,0,0,10,10

Boxf 0,0,10,10,3

GetaShape 1,0,0,10,10

QAMIGA

SaveShapes 0,2, "RAM:SHAPES"
Cls

LoadShapes 0, "RAM:SHAPES"
Blit 0,140,100

Blit 1,160,100

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

8.2.2 Grabbing shapes

GETASHAPE

Mode(s): Amiga/Blitz
Statement: grab a BitMap image into a shape object
Syntax: GetaShape SHAPE#,X,Y,WIDTH,HEIGHT

Grabbing chunks of BitMaps is a speciality of Blitz Basic. The GETASHAPE statement copies a
rectangular area of the currently used BitMap into the shape object specified by SHAPE#. The X and Y
parameters are the coordinates of the top left of the box and the WIDTH and HEIGHT parameters
specify the size of the area in pixels. Try the following example:

204

8.Sprites and Shapes

; *** GetaShape example
; ¥** Filename - GetaShape.bb2

Screen 0,3,"My Blobs"
ScreensBitMap 0,0
Circlef 100,100,10,5
GetaShape 0,80,80,120,120
For A=1 To 10
Blit ©,Rnd(100)+10,Rnd(100)+30

Next A

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

8.2.3 Manipulating shapes

COPYSHAPE

Mode(s): Amiga/Blitz
Statement: copy one shape object to another shape object
Syntax: CopyShape SOURCE,DESTINATION

The COPYSHAPE statement copies one shape object (SOURCE) into another shape object
(DESTINATION). This is a quick and simple way of creating "carbon copies" of shapes. For example:

; *** CopyShape example
; *** Filename - CopyShape.bb2

PalRGB ©,1,15,15,15
Screen 0,3,"Hello"
ScreensBitMap 9,0
GetaShape 0,0,0,50,10
For A=1 To 4
CopyShape 0,A
Blit A,50,50+(A*20)
Next A
Use Palette ©
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

205

8.Sprites and Shapes

HANDLE

Mode(s): Amiga/Blitz
Statement: set reference point for all shape coordinate calculations
Syntax: Handle SHAPE#,X,Y

The HANDLE statement sets the reference point of the shape object, SHAPE#. The handle offset (X,Y) is
measured in pixels from the top left-hand corner of the shape. For example:

; *** Handle example
; ¥** Filename - Handle.bb2

Screen 0,3,"My Blobs"
ScreensBitMap 9,0
BitMapOutput ©

Circle 100,100,10,6
GetaShape 0,80,80,120,120
Cls

NPrint "Default handle"

Blit 0,50,50

Locate 0,6

NPrint "User handle"

Handle 0,40,40

Blit 0,590,590

; ¥** Wait for a mouse click
MouselWait

; *¥** Return to Blitz Basic 2 editor
End

For those who don't fancy getting their hands dirty, Blitz Basic provides an automatic method of
centring these reference points.

MIDHANDLE

Mode(s): Amiga/Blitz
Statement: set reference point to shape's centre
Syntax: MidHandle SHAPE#

Here is an example:

; *** MidHandle example
; *** Filename - MidHandle.bb2

Screen 0,3
ScreensBitMap 9,0

206

8.Sprites and Shapes

BitMapOutput ©

Circle 100,100,10,6

GetaShape 0,80,80,120,120

Cls

NPrint "Using Midhandle™

MidHandle ©

Blit 0,70,60

ViWait 100

Cls

Locate 0,0

NPrint "Manual handle"

Handle 0,ShapeWidth(@)/2,ShapeHeight(0)/2
Blit 0,70,60

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

8.2.4 Shape functions

SHAPEWIDTH

Mode(s): Amiga/Blitz
Function: return the width of a shape object
Syntax: w=ShapeWidth SHAPE#

SHAPEWIDTH returns the width of a shape object in pixels.

SHAPEHEIGHT

Mode(s): Amiga/Blitz
Function: return the height of a shape object
Syntax: h=ShapeHeight SHAPE#

SHAPEHEIGHT returns the height of a shape object in pixels. For example:

; *** Shape dimensions example
; *** Filename - ShapeHeight.bb2

ViWait 20
BLITZ
BitMap @,320,256,3
For A=0 To 10
Boxf 10,10,200,200,Rnd(6)+1
GetaShape A,10,10,Rnd(100)+60,Rnd(100)+70
Next A
Cls

207

8.Sprites and Shapes

BitMapOutput ©

Slice 0,44,3

Show ©

For B=0 To 10
Blit B, 10,50
W=ShapeWidth(B)
H=ShapeHeight(B)

Locate 0,0
NPrint "Shape : ",B
NPrint "Width : ",W," pixels"
NPrint "Height : ",H," pixels"
ViWait 50
Cls
Next B
; *** Return to Blitz Basic 2 editor
End

8.2.5 Automatic shape flipping

The characters in most commercial computer games are composed of hundreds of individual frames of
animation. There are frames where the object is animating left to right, and up and down. Naturally, the
more frames you have, the greater the disk space needed to store the objects, and the greater the
amount of memory needed to display the objects.

Instead of storing seperate objects in the shape bank for reversed images, you can use Blitz 2's
automatic shape flipping commands.

XFLIP

Mode(s): Amiga/Blitz
Statement: flip a shape horizontally
Syntax: XFlip SHAPE#

This statement reverses a shape object horizontally about the y-axis, thus creating a mirror image. XFLIP
replaces the old shape object with this mirror image. To avoid this happening, use the COPYSHAPE
statement to "clone" a shape and perform all shape manipulation commands on this instead. Try the
following example:

;5 ¥** XFlip example
; *** Filename - XFlip.bb2

PalRGB ©,1,15,15,15

BLITZ

BitMap ©,320,256,1
BitMapOutput ©

Locate 1,1

NPrint "Totally flipped!"
Box 7,5,134,17,1

208

8.Sprites and Shapes

GetaShape 0,7,5,134,17

Cls

CopyShape 0,1

XFlip 1

Slice 0,44,1

Use Palette ©

Show ©

Blit ©,10,10

Blit 1,4,25

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

To mirror a shape object about the x-axis (i.e. vertically) you use the following statement.

YFLIP

Mode(s): Amiga/Blitz
Statement: flip a shape vertically
Syntax: YFlip SHAPE#

For example:

;5 ¥** YFlip example
; ¥** Filename - YFlip.bb2

BLITZ

BitMap ©,320,256,5

BitMapOutput ©

For A=1 To 50
Locate Rnd(30),Rnd(20)
Colour Rnd(30)+1,Rnd(30)+1
NPrint "Totally flipped!"

Next A

GetaShape 0,0,0,320,100

Cls

CopyShape 0,1

YFlip 1

Slice 0,44,5

Use Palette ©

Show ©

Blit 0,0,0

Blit 1,0,105

; ¥** Wait for a mouse click

MouseWait

; *¥** Return to Blitz Basic 2 editor

End

209

8.Sprites and Shapes

8.2.6 Shape scaling and rotation

If you are familiar with the Super Nintendo console then you will be aware of its special graphics mode:
Mode 7. Mode 7 uses the SNES hardware to bend, rotate, twist, and scale graphics to create totally new
images - and in realtime too!. Whilst Blitz Basic is no match for the Super Nintendo's custom hardware,
it can be used to create some wonderful special effects, such as scaling and rotation.

SCALE

Mode(s): Amiga/Blitz
Statement: scale a shape object
Syntax: Scale SHAPE#,X_RATIO,Y RATIO[,PALETTE#]

Blitz Basic allows direct manipulation of a shape's size, although unfortunately not in realtime. The
SCALE statement is used to stretch and shrink shape objects beyond recognition!

The X_RATIO and Y_RATIO parameters control the ratio of the enlargement/reduction. They are fully
independent of each other and as such, different scaling can be applied to each axis:

Table 8.2 : SCALE ratios

RATIO Effect

<1 Reduction in size
=1 No reduction/enlargement
>1 Enlargement in size

The optional PALETTE# parameter is used to specify a palette object for use in the scaling operation. If a
palette is supplied then a shape may be shrunk without experiencing a loss in detail.

Try the following example, which uses the SCALE statement to magnify a text string. The routine takes a
little while to generate the text, so do be patient!:

; *** Shape Scaling
; ¥** Filename - Scale.bb2

PalRGB ©0,1,15,15,15
BLITZ

BitMap ©,320,256,1
BitMapOutput ©

Slice 0,44,1

Use Palette ©

Show ©

Locate 1,1

NPrint "Magnified text!!"
GetaShape 0,7,5,134,17
Cls

CopyShape 0,1

210

8.Sprites and Shapes

Scale 0,2,2
Blit 1,10,10
Blit 0,4,100
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

ROTATE

Mode(s): Amiga/Blitz
Statement: rotate a shape object
Syntax: Rotate SHAPE#,ANGLE_RATIO

The ROTATE statement is used to rotate a shape object. The ANGLE_RATIO parameter specifies the size
of clockwise rotation to be applied, in the range 0-1:

Table 8.3 : ROTATE angle ratios

ANGLE_RATIO Size of rotation

0.00 0@ degrees

0.25 90 degrees
0.50 180 degrees
0.75 270 degrees
1.00 360 degrees

Here is an example:

; *** Shape Rotation
; ¥** Filename - Rotate.bb2

PalRGB ©0,1,15,15,15
BLITZ
BitMap ©,320,256,1
BitMapOutput ©
Locate 1,1
NPrint "Rotated, I'm sure"
Box 7,5,144,17,1
GetaShape 0,7,5,144,17
Cls
For A=1 To 4

CopyShape 0,A

Rotate A,A/10

Blit A,50+(A*20),50
Next A
Slice 0,44,1

211

8.Sprites and Shapes

Use Palette ©

Show ©

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

8.2.7 Cookiecuts

AUTOCOOKIE

Mode(s): Amiga/Blitz
Statement: toggle cookiecut mode
Syntax: AutoCookie On/Off

When shape objects are used by any of the blitting commands they usually require the presence of a
"cookiecut”. These cookiecuts do not affect the appearance or qualities of a shape object, but they do
consume Chip memory. When a shape is created using the LOADSHAPE or GETASHAPE commands, a
cookiecut is automatically created for it. This may be turned off using the AUTOCOOKIE OFF statement
and is primarily of use for shapes used as gadgets or in menus. Example:

; *** AutoCookie example
; ¥** Filename - AutoCookie.bb2

Screen 9,3
ScreensBitMap 9,0
For A=7 To 1 Step -1
Circlef 16,32,A*2,A
Next
GetaShape 0,0,16,32,32
SaveShape 0, "RAM:SHAPE"
Cls
AutoCookie Off
LoadShape ©, "RAM:SHAPE"
ShapeGadget 0,148,50,0,1,0
TextGadget 0,140,180,0,2," Quit "
Window ©,0,20,320,200,%100f, " "Select a gadget",1,2,0
Repeat
Until WaitEvent=64 AND GadgetHit=2
; *** Return to Blitz Basic 2 editor
End

212

8.Sprites and Shapes

MAKECOOKIE

Mode(s): Amiga/Blitz
Statement: create a cookiecut for a shape
Syntax: MakeCookie SHAPE#

MAKECOOKIE is used to create a cookiecut for a shape object. Here's an example:

; *** MakeCookie example
; *¥** Filename - MakeCookie.bb2

Screen 0,3
ScreensBitMap 0,0
For A=7 To 1 Step -1
Circlef 16,32,A*2,A
Next
GetaShape 0,0,16,32,32
SaveShape 0, "RAM:SHAPE"
Cls
AutoCookie Off
LoadShape ©, "RAM:SHAPE"
; ¥** Try removing the next line
MakeCookie ©
For B=1 To 100
Blit ©,Rnd(260)+30,Rnd(150)+30

Next B

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

8.3 Blitting

The following section covers all of the commands that are used to draw shapes on to BitMaps using the
Amiga's Blitter chip.

As has been explained, there are three main blitting techniques: BLIT, QBLIT and BBLIT.

BLIT is the simplest blitting technique. It is primarily of use when displaying static images as it has no
provision for the movement of shapes.

QBLIT does allow for movement, however it does corrupt any background graphics present. It is useful
for animating shapes on blank backgrounds or on dual-playfield displays (where the shapes are
displayed on one playfield and the background is held on another).

The great thing about BBLIT is that you don't have to worry about shapes corrupting your background
graphics. Because the background is held in a special storage buffer, Blitz automatically redraws the
background BitMap every time the shapes are moved.

213

8.Sprites and Shapes

8.3.1 A simple blit

BLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: Blit SHAPE#,X,Y[,EXCESS]

The BLIT statement is the simplest of the blitting commands. Is is used to draw a shape object (SHAPE#)
on the currently used BitMap at the co-ordinates specified by the X and Y parameters.

If the optional EXCESS parameter is included then any excess bitplanes may be set on or off. This is
primarily of use when a shape object has fewer bitplanes than the BitMap on which it is displayed.
EXCESS allows you to specify an on/off value for the excess bitplanes (i.e. the bitplanes beyond those
altered by the shape):

Table 8.4 : The EXCESS parameter

Bit On/Off value for...

0 First bitpane

1 Second bitplane
2 Third bitplane
3 Fourth bitplane
4 Fifth bitplane

The BLITMODE statement may be used to alter the output of the BLIT statement. Here is a full example:

; *** Blit example
; *** Filename - Blit.bb2

BLITZ
BitMap ©,640,256,3
Slice 0,44,320,256,$fff8,3,8,8,640,640
Show ©
For A=1 To 15
Colsplit 1,A,A,A,99+A
Next A
RGB 0,0,0,0
RGB 1,15,15,15
Boxf 20,20,40,40,1
GetaShape 0,20,20,40,40
Cls ©
For X=0 To 320
ViWait
Blit 0,X,100
Next X
; ¥** Wait for a mouse click

214

8.Sprites and Shapes

MouseWait
; ¥** Return to Blitz Basic 2 editor
End

CLIPBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: ClipBlit SHAPE#,X,Y

CLIPBLIT works identically to the BLIT statement, except it will clip the shape object to the inside of the
currently used BitMap. For example:

; *** ClipBlit example
; *** Filename - ClipBlit.bb2

BLITZ

BitMap ©,320,256,3

Slice 0,44,3

Show ©

RGB 0,0,0,0

RGB 1,15,0,15

Boxf 20,20,40,40,1

GetaShape 0,20,20,40,40

Cls o

; ¥** If you replace this line with
; *** a normal blit command then

; ¥** Blitz will generate a "Coords
; *¥** outside of BitMap" error
ClipBlit 0,310,100

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

BLOCK

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: Block SHAPE#,X,Y

This is an extremely fast version of the BLIT statement. However, BLOCK should only be used with
shapes that are 16,32,48,64 etc. pixels wide and that are blitted to an x co-ordinate of 0,16,32,48,64 etc.
(i.e. divisible by 16). The height and y co-ordinate of the shape are not limited by the BLOCK statement.
Here is an example:

215

8.Sprites and Shapes

*** Block example
; ¥** Filename - Block.bb2

Dim MAP(10,5)
BLITZ
BitMap ©0,320,256,3
Slice 0,44,3
Show ©
For A=0 To 7
Boxf 9+A,9+A,26-A,26-A,A
Next A
GetaShape 0,10,10,26,26
Cls
Restore DAT
For Y=1 To 5
For X=1 To 10
Read MAP(X,Y)
If MAP(X,Y)=1
Block 0,X*16,Y*16
End If
Next X
Next Y
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

DAT:
Data 1,0,0,1,0,0,1,1,1,0
Data 1,0,0,1,0,0,0,1,0,0
Data 1,1,1,1,0,0,0,1,0,0
Data 1,0,0,1,0,0,0,1,0,0
Data 1,0,0,1,0,0,1,1,1,0

8.3.2 Blit modes

BLITMODE

Mode(s): Amiga/Blitz
Statement: change Blit mode
Syntax: BlitMode BLTCON®

The BLITMODE statement is used to alter the output of the BLIT statement when drawing shape objects
onto BitMaps:

216

8.Sprites and Shapes

Table 8.5 : Blit modes

BLTCON® Description

CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap

InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

COOKIEMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to default
Syntax: BlitMode CookieMode

The COOKIEMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using COOKIEMODE as a blitting mode will cause a shape to be blitted normally onto a
BitMap.

ERASEMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to erase mode
Syntax: BlitMode EraseMode

The ERASEMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using ERASEMODE as a blitting mode will cause a shape to erase a section of a BitMap
corresponding to the outline of the shape.

INVMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to inverse mode
Syntax: BlitMode InvMode

The INVMODE function returns a value which may be used by one of the commands involved in blitting
modes. Using INVMODE as a blitting mode will cause a shape to invert a section of a BitMap
corresponding to the outline of the shape.

217

8.Sprites and Shapes

SOLIDMODE

Mode(s): Amiga/Blitz
Function: change Blit mode to one-colour mode
Syntax: BlitMode SolidMode

The SOLIDMODE function returns a value which may be used by one of the commands involved in
blitting modes. Using SOLIDMODE as a blitting mode will cause a shape to overwrite a section of a
BitMap corresponding to the outline of the shape.

Here is a full example which demonstrates the various blitting modes:

*** BlitMode example
;5 *** Filename - BlitMode.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
RGB 0,0,0,0
RGB 1,15,0,15
Circlef 32,32,28,5
Box 15,10,49,54,6
GetaShape 0,0,0,64,64
Boxf 0,0,250,130,4
BitMapOutput ©
; ¥** Default mode
BlitMode CookieMode
Blit 0,0,0

*** Erase mode
BlitMode EraseMode
Blit 0,160,0

*¥** Inverse mode
BlitMode InvMode
Blit 0,090,100
; ¥** Solid mode
BlitMode SolidMode
Blit 0,160,100
; ¥** Wait for a mouse click
MouselWait

*¥** Return to Blitz Basic 2 editor
End

218

8.Sprites and Shapes

8.3.3 Queue blits

The correct procedure for creating a Queue blit is as follows:

1. Define a queue using QUEUE
2. Blit the shapes using QBLIT
3. Erase the shapes using UNQUEUE

QUEUE

Mode(s): Amiga/Blitz
Statement: create a queue object
Syntax: Queue QUEUE#,ITEMS

QBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: QBlit QUEUE#,SHAPE#,X,Y[,EXCESS]

UNQUEUE

Mode(s): Amiga/Blitz
Statement: erase all previously QBlitted items
Syntax: Unqueue QUEUE#[,BITMAP#]

The QUEUE statement defines a queue object for use with the QBLIT and UNQUEUE statements The
ITEMS parameter specifies the maximum number of shapes the queue is capable of remembering.

QBLIT is used to draw a shape onto the currently used BitMap. It also stores the size and co-ordinates
of the shape (consult the BLIT statement for parameter information).

The UNQUEUE statement is used to erase all remembered shapes in a queue. If the optional BITMAP#
parameter is included then items may be erased by way of replacement from another BitMap.

Here's an example:

; *¥** QBlit example
; ¥** Filename - QBlit.bb2

BLITZ

BitMap ©,320,256,3
Slice 0,44,3

Show ©

Boxf 10,10,20,20,6

219

8.Sprites and Shapes

GetaShape 0,10,10,20,20
Cls o
; *** Define a queue for 10 shapes
Queue 0,10
For X=32 To 300

VWait

; *** Erase shapes

UnQueue ©

; *** Draw shapes

For Y=1 To 10

QBlit 0,0,X,10+Y*16

Next Y
Next X
; ¥** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

FLUSHQUEUE

Mode(s): Amiga/Blitz
Statement: erase a queue
Syntax: FlushQueue QUEUE#

FLUSHQUEUE is used to erase a queue object, causing the next UNQUEUE statement to have no effect.

QBLITMODE

Mode(s): Amiga/Blitz
Statement: change QBlit mode
Syntax: QBlitMode BLTCON®©

The QBLITMODE statement is used to alter the output of the QBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

Table 8.6 : QBlit modes

BLTCON® Description

CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap

InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

220

8.Sprites and Shapes

8.3.4 Buffer blits

The correct procedure for creating a Buffer blit is as follows:
1. Define a storage buffer using BUFFER
2. Blit the shapes using BBLIT
3. Erase the shapes using UNBUFFER

BUFFER

Mode(s): Amiga/Blitz
Statement: create a buffer object
Syntax: Buffer BUFFER#,LENGTH

BBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap
Syntax: BBlit BUFFER#,SHAPE#,X,Y[,EXCESS]

UNBUFFER

Mode(s): Amiga/Blitz
Statement: erase all previously BBlitted items
Syntax: UnBuffer BUFFER#

The BUFFER statement is used to create a buffer object. Buffers differ from queues in their ability to
preserve background graphics.

The LENGTH parameter specifies the memory, in bytes, to be used as temporary storage for the
preservation of background graphics. The value of this parameter varies depending upon the size and
maximum number of shapes to blit. A LENGTH of 16384 bytes (the default) should be enough, but this
may be increased if you get "Buffer Overflow" error messages.

The BBLIT statement is used to draw a shape onto the currently used BitMap, and preserve the
overwritten area into a previously initialised buffer (consult the BLIT statement for parameter
information).

UNBUFFER simply replaces areas on a BitMap overwritten by the BBLIT statement.

Here is a complete example:

221

8.Sprites and Shapes

; *** BBlit example
; ¥** Filename - BBlit.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
Boxf 10,10,20,20,7
GetaShape 0,10,10,20,20
Cls o
For A=1 To 100

Circlef Rnd(320),Rnd(200),Rnd(30)+10,Rnd(5)+1
Next A
; ¥** Create storage buffer
Buffer 0,16384
For X=32 To 300

Viait

; *** Restore background

UnBuffer ©

For Y=1 To 10

; *** Draw shapes
BBlit ©,0,X,10+Y*16

Next Y
Next X
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

FLUSHBUFFER

Mode(s): Amiga/Blitz
Statement: erase a buffer
Syntax: FlushBuffer BUFFER#

FLUSHBUFFER erases a buffer, causing the next UNBUFFER statement to have no effect.

BBLITMODE

Mode(s): Amiga/Blitz
Statement: change BBlit mode
Syntax: BBlitMode BLTCON®©

The BBLITMODE statement is used to alter the output of the BBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

222

8.Sprites and Shapes

Table 8.7 : BBlit modes

BLTCON® Description

CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap

InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

For example:

; *** BBlitMode example
; *** Filename - BBlitMode.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
Boxf 10,10,20,20,7
GetaShape 0,10,10,20,20
Cls o
For A=1 To 100

Circlef Rnd(320),Rnd(200),Rnd(30)+10,Rnd(5)+1
Next A
BBlitMode InvMode
Buffer 0,16384
For X=32 To 300

VWait

UnBuffer 0

For Y=1 To 10

BBlit 0,0,X,10+Y*16

Next Y
Next X
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

8.3.5 Stencil blits

The blitting technique which we haven't covered so far is the stencil blit. Stencils allow you to move
shapes between background and foreground graphics to produce an illusion of depth.

Here is the correct procedure:

1. Draw a BitMap comprised of both foreground and background graphics.

2. Create a stencil with only the foreground graphics on it, using either STENCIL or SBLIT.
3. BBLIT the shapes.

4. Display the foreground graphics on top of the shapes using SHOWSTENCIL.

223

8.Sprites and Shapes

STENCIL

Mode(s): Amiga/Blitz
Statement: create a stencil object
Syntax: Stencil STENCIL#,BITMAP#

SHOWSTENCIL

Mode(s): Amiga/Blitz
Statement: show stencil on a BitMap
Syntax: ShowStencil BUFFER#,STENCIL#

The STENCIL statement creates a stencil object containing the contents of a BitMap.

SHOWSTENCIL is used to display the stencil object on a BitMap. Here is an example:

; *¥** Stencil example
*** Filename - Stencil.bb2

BLITZ
BitMap ©,320,256,3
Slice 0,44,3
Show ©
Circlef 30,30,30,2
GetaShape 0,0,0,61,60
Cls
; *** Draw mountain background
Y=200 : LAND=3 : DI=-1
For X=0 To 320
D=Int(Rnd(LAND))
If D=1 Then DI=-1
If D=2 Then DI=1
Let Y+DI
If Y<0 Then Y=0
If Y>256-1 Then Y=255
Line X,256,X,Y-10,4
Next X
*** Store mountain in memory
Stencil 0,0
Buffer 0,16384
For X=20 To 250
ViWait
UnBuffer @
*** Show shape
BBlit ©,0,X,150
; *** Replace mountain on top
ShowStencil 0,0
Next X

224

8.Sprites and Shapes

**¥* Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

SBLIT

Mode(s): Amiga/Blitz
Statement: draw a shape object on a BitMap and update stencil
Syntax: SBlit STENCIL#,SHAPE#,X,Y[,EXCESS]

SBLIT works identically to the BLIT statement and also updates the specified stencil. This is an easy way
to render foreground graphics to a BitMap. Try the following example:

; ¥** SBlit example
*** Filename - SBlit.bb2

BLITZ
BitMap ©0,320,256,3
Slice 0,44,3
Show ©
Boxf 0,0,20,20,6
GetaShape 0,0,0,20,20
Boxf 0,0,20,20,7
GetaShape 1,0,0,20,20
Cls
; *¥** Set stencil
Stencil 0,0
For A=1 To 100
Circlef Rnd(320),Rnd(256),Rnd(20)+5,Rnd(4)+1
Next A
; *** Update stencil and add shapes
For B=1 To 50
SBlit ©,1,Rnd(280)+20,Rnd(180)+20
Next B
Buffer 0,16384
For X=20 To 300
ViWait
UnBuffer ©
; *** Show shapes
BBlit ©,0,X,50
BBlit 0,0,X,100
BBlit 0,0,X,150
; ¥** Replace stencil
ShowStencil 0,0
Next X
; ¥** Wait for a mouse click
MouseWait

225

8.Sprites and Shapes

; *¥** Return to Blitz Basic 2 editor
End

SBLITMODE

Mode(s): Amiga/Blitz
Statement: change SBlit mode
Syntax: SBlitMode BLTCON®

The SBLITMODE statement is used to alter the output of the SBLIT statement, when drawing shape
objects onto BitMaps. It works identically to the BLITMODE statement:

Table 8.8 : SBlit modes

BLTCON® Description

CookieMode Shape drawn normally (default mode)
EraseMode Shape erases destination BitMap

InvMode Shape inversed on destination BitMap
SolidMode Shape drawn as a solid area of one colour

8.4 Detecting Collisions

Virtually every computer game ever created uses collision detection to some extent. If the aliens didn't
explode, or the cars didn't crash then there would be little point in playing. The secret of good collision
detection lies with its accuracy: if the collision detection is too accurate then the player will die
unneccessarily, and if the detection is too lenient then the player will always win. Striking the right
balance between the two is easy with Blitz Basic and its comprehensive command set.

This entire section is devoted to the finer points of collision detection.

8.4.1 Colours and sprites

SETCOLL

Mode(s): Amiga/Blitz
Statement: set collision detection to between a screen colour and sprite
Syntax: c=SetColl COLOUR,BITPLANES[,PLAYFIELD]

This statement sets sprite/BitMap collisions to between sprites and individual screen colours. SETCOLL
allows you to specify a single colour (the COLOUR parameter) which, when present in a BitMap, and in
contact with a sprite, will cause a collision. The BITPLANES parameter specifies the number of bitplanes
in the currently used BitMap (since SETCOLL involves sprites, this figure should be either 2 or 4).
SETCOLL does not detect the actual collisions; it is used in conjunction with the PCOLL statement to
control the finer points of collision detection.

226

8.Sprites and Shapes

The optional PLAYFIELD parameter should be included when dual-playfield Slices are being used. If
PLAYFIELD is set to (1), then COLOUR refers to a colour on the foreground BitMap, and a PLAYFIELD
value of (0) refers to a colour on the background BitMap. Try the following example, in which a collision
occurs when the sprite collides with colour 15:

; ¥** SetColl example
; *** Filename - SetColl.bb2

BitMap ©,320,256,4
BitMapOutput ©
Boxf 0,0,7,7,3
GetaShape 0,0,0,8,8
GetaSprite 0,0
Free Shape ©
Cls
BLITZ
Slice 0,44,4
Show ©
For A=1 To 100
Plot Rnd(320),Rnd(256),Rnd(14)+1
Next A
Boxf 80,100,250,200,15
SetColl 15,4
X=50: Y=50
X1=4 : Y1=4
Repeat
ViWait
DoColl
Locate 0,0
If PColl(@)
Print "Collision"
Else
Print
EndIf
ShowSprite 0,X,Y,1
Let X+X1 : Let Y+Y1l
If X<=10 OR X>=300 Then X1=-X1
If Y<=20 OR Y»=200 Then Y1l=-Y1
Until Joyb(©)>0
; *** Return to Blitz Basic 2 editor
End

SETCOLLODD

Mode(s): Amiga/Blitz
Statement: set collision detection between odd screen colours and sprites
Syntax: SetColl0dd BITPLANES

227

8.Sprites and Shapes

The SETCOLLODD statement sets sprite/BitMap collisions to between sprites and the odd colours of the
colour palette (eg. 1,3,5,7,9 etc.). The BITPLANES parameter should be set to the number of bitplanes in
the current BitMap (either 2 or 4). Here is an example:

; *¥** SetCollOdd example
; ¥** Filename - SetCollOdd.bb2

BLITZ
BitMap ©0,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
Boxf ©,0,20,20,1
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
; ¥** Set odd colours to white
For COLS=1 To 16 Step 2
RGB COLS,15,15,15
Next COLS
For A=1 To 30
X=Rnd(320)
Y=Rnd (200)
Boxf X,Y,X+20,Y+20,Rnd(15)
Next A
; *** Set collision type
SetCollOodd
Mouse On
Pointer 0,0
Repeat
ViWait
DoColl
Locate 0,0
; ¥** Detect if white square touched
If PColl(@)
Print "Collision"
Else
Print
EndIf
Until Joyb(@)>0
; ¥** Return to Blitz Basic 2 editor
End

SETCOLLHI

Mode(s): Amiga/Blitz
Statement: set collision detection to between upper palette and sprites
Syntax: SetCollHi BITPLANES

228

8.Sprites and Shapes

This statement sets sprite/BitMap collisions to between sprites and the upper-half of the colour palette:

Table 8.9 : The upper-half of a colour palette

Bitplanes Colours Upper-half

The BITPLANES parameter should be set to the number of bitplanes in the current BitMap. For example:

; *¥** SetCollHi example
; *** Filename - SetCollHi.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
Boxf 0,0,20,20,1
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 8
Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(9)+7
Next A
SetCollHi 4
Mouse On
Pointer 0,0
Repeat
ViWait
DoColl
Locate 0,0
If PColl(0@)
Print "Collision"
Else
Print " "
EndIf
Until Joyb(@)>0
; *** Return to Blitz Basic 2 editor
End

229

8.Sprites and Shapes

8.4.2 Executing collision detection

DOCOLL

Mode(s): Blitz
Statement: execute collision detection
Syntax: DoColl

The DOCOLL statement executes sprite/BitMap collision detection and must be called before each
PCOLL and SCOLL statement. Before DOCOLL can be used in conjunction with PCOLL, the type of
BitMap collisions to be detected must have been specified using either SETCOLL, SETCOLLODD or
SETCOLLHI.

Table 8.10 : The detection methods which need DoColl

Detection method DoColl?

Y
SCOLL Y
SHAPESHIT N
BLITCOLL N
SHAPESPRITEHIT N
SPRITESHIT N
RECTSHIT N

Try the following example:

; *** DoColl example
; *** Filename - DoColl.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 20
Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(7)+9
Next A
SetCollHi 4
For X=10 To 300
ViWait
ShowSprite 0,X,100,0
DoColl

230

8.Sprites and Shapes

Locate 0,0
If PColl(@)
Print "Collision"
Else
Print
EndIf
Next X
; ¥** Return to Blitz Basic 2 editor
End

8.4.3 Collision checking

PCOLL

Mode(s): Blitz
Function: check for collision between a particular sprite and screen colour
Syntax: p=PCol1(SPRITE#)

PCOLL checks for collisions between a sprite and any BitMap graphics. If a collision has occured then
(-1) is returned, otherwise (0) is returned. PCOLL must follow a DCOLL statement. See previous example.

8.4.4 Sprite colisions

SCOLL

Mode(s): Blitz
Function: check for collision between 2 sprites
Syntax: s=SCol1(SPRITE1#,SPRITE2#)

The SCOLL function returns the collision status between two sprites (SPRITE1# and SPRITE2#). If the
sprites have collided then (-1) is returned, otherwise (0) is returned. SCOLL must follow a DCOLL
statement. Example:

; *¥** SColl example
; ¥** Filename - SColl.bb2

BLITZ

BitMap ©0,320,256,4
BitMapOutput ©

Slice 0,44,4

Show ©

Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0

Cls

For A=1 To 100

231

8.Sprites and Shapes

Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
For X=10 To 300
ViWait
DoColl
ShowSprite 0,X,100,0
ShowSprite 0,X2,100,4
Locate 0,0
If SColl(0,4)
Print "BOOM!!!"
Else
Print
EndIf
Let X2-1
Next X
; *¥** Return to Blitz Basic 2 editor
End

8.4.5 Shape collisions

SHAPESHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 shapes
Syntax: ShapesHit(SHAPE1#,X1,Y1,SHAPE2#,X2,Y2)

This function returns the collision status of two rectangular shape areas. The X and Y parameters are the
coordinates of the shapes to check. If the two shapes overlap then (-1) wil be returned, otherwise (0)
will be returned. For example:

*** ShapesHit example
; *** Filename - ShapesHit.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
Boxf 0,0,20,20,1
Boxf 5,5,15,15,2
GetaShape 0,0,0,20,20
Cls
For A=1 To 100

Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
Buffer 0,16384

232

8.Sprites and Shapes

For X=10 To 300
VWait
UnBuffer ©
BBlit ©,0,X,100,0
BBlit ©,0,X2,100,4
Locate 0,0
If ShapesHit(90,X,100,0,X2,100)
Print "BOOM!!!"
Else
Print
EndIf
Let X2-1
Next X
; ¥** Return to Blitz Basic 2 editor
End

BLITCOLL

Mode(s): Amiga/Blitz
Function: return the collision status of a shape
Syntax: b=BlitColl(SHAPE#,X,Y)

The BLITCOLL function provides a fast way of testing the collision status of a shape (SHAPE#). A collision
occurs if the shape object touches any pixel on the currently used BitMap that is not of colour zero. If a
collision occurs then (-1) is returned, otherwise (0) is returned. For example:

; ¥** BlitColl example
*** Filename - BlitColl.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
For COLS=1 To 8
Boxf ©+COLS,0+COLS,20-COLS,20-COLS,COLS
Next COLS
GetaShape 0,0,0,20,20
Cls
For A=1 To 15
Circlef Rnd(320),Rnd(200),Rnd(20)+10,Rnd(7)+9
Next A
Buffer 90,16384
For X=10 To 300
ViWait
UnBuffer ©
Locate 0,0
If BlitColl(@,X,100)

233

8.Sprites and Shapes

Print "Collision detected"
Else
Print
EndIf
BBlit 0,0,X,100,0
Next X
; *¥** Return to Blitz Basic 2 editor
End

8.4.6 Shape and sprite collisions

SHAPESPRITEHIT

Mode(s): Amiga/Blitz
Function: check for collision between a shape and a sprite
Syntax: s=ShapeSpriteHit(SHAPE#,X1,Y1,SPRITE#,X2,Y2)

The SHAPESPRITEHIT returns the collision status of a rectangular sprite area and a rectangular shape
area. The X and Y parameters are the coordinates of the sprite/shape to check. If the sprite and the
shape overlap then (-1) wil be returned, otherwise (0) will be returned

; *** ShapeSpriteHit example
; *** Filename - ShapeSpriteHit.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
For COLS=1 To 8
Boxf ©+COLS,0+COLS,20-COLS,20-COLS,COLS
Next COLS
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
Buffer 0,16384
X2=300
For X=10 To 300
ViWait
UnBuffer ©
Locate 0,0
If ShapeSpriteHit(0,X,100,0,X2,100)
Print "Collision detected"
Else
Print " "
EndIf
BBlit ©,0,X,100,0
ShowSprite 0,X2,100,0

234

8.Sprites and Shapes

Let X2-1
Next X

*** Return to Blitz Basic 2 editor
End

8.4.7 Sprite area collisions

SPRITESHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 rectangular sprite areas
Syntax: s=SpritesHit(SPRITE1#,X1,Y1,SPRITE2#,X2,Y2)

This function returns the collision status of two rectangular sprite areas. The X and Y parameters are the
coordinates of the sprites to check. If the two sprites overlap then (-1) wil be returned, otherwise (0) will
be returned. For example:

; *¥** SpritesHit example
*** Filename - SpritesHit.bb2

BLITZ
BitMap ©0,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
Boxf 0,0,20,20,13
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
For A=1 To 100
Plot Rnd(320),Rnd(200),Rnd(7)+9
Next A
X2=300
For X=10 To 300
VWait
ShowSprite 0,X,100,0
ShowSprite 0,X2,100,4
Locate 0,0
If SpritesHit(0,X,100,0,X2,100)
Print "BOOM!!I!"
Else
Print
EndIf
Let X2-1
Next X
*** Return to Blitz Basic 2 editor
End

235

8.Sprites and Shapes

8.4.8 Rectangular area collisions

RECTSHIT

Mode(s): Amiga/Blitz
Function: check for collision between 2 rectangular areas
Syntax: r=RectsHit(X1,Y1,WIDTH1,HEIGHT1,X2,Y2,WIDTH2,HEIGHT2)

The RECTSHIT function returns the collision status of two rectangular areas. X1,Y1,WIDTH1 and HEIGHT1
are the coordinates of the first rectangular area and X2,Y2,WIDTH2 and HEIGHT2 are the coordinates of
the second rectangular area. If the two areas overlap (or collide) then (-1) will be returned, otherwise (0)
will be returned. Try the following example:

; *** RectsHit example
;5 *** Filename - RectsHit.bb2

BLITZ
BitMap ©,320,256,4
BitMapOutput ©
Slice 0,44,4
Show ©
GetaShape 0,0,0,20,20
GetaSprite 0,0
Cls
X2=300
Y2=100
For X=10 To 300
ViWait
Locate 0,0
If RectsHit(0,100,30+X,120,X2,Y2,X2+50,Y2+50)
Print "Collision detected"
MouseWait
End
EndIf
Boxf 0+X,100,30+X,150,8
Boxf X2,Y2,X2+50,Y2+50,3
Let X2-1
Next X
; *¥** Return to Blitz Basic 2 editor
End

236

8.Sprites and Shapes

8.5 End-of-Chapter summary

A sprite is a graphical object which is moved by the Amiga's hardware and does not corrupt
background graphics. Sprites are initialised by either loading them from disk, or by converting a shape
object into a sprite object using the GETASPRITE statement.

Shapes are objects drawn, or blitted, by the Amiga's Blitter chip. There are three main blitting
techniques: BLIT, QBLIT and BBLIT.

Collisions between colours and sprites are defined using the SETCOLL statement.

The DOCOLL statement executes sprite/BitMap collision detection and must be called before each
PCOLL and SCOLL statement.

The SCOLL function returns the collision status between two sprites.

PCOLL checks for collisions between a sprite and any BitMap graphics.

Collisions involving shapes are tested using the SHAPESHIT and BLITCOLL functions.
Collisions between sprites are tested using SPRITESHIT.

Collisions between shapes and sprites are tested using the SHAPESPRITEHIT function.

Collisions between two rectangular areas are tested using RECTSHIT.

237

Chapter 9 : Audio

9.1 Pump up the volume

VOLUME

Mode(s): Amiga/Blitz
Statement: control sound volume
Syntax: Volume MASK,VOL1[,VvOL2][,VOL3][,VOL4]

The VOLUME statement controls the volume of sound which passes through one or more of the
Amiga's four sound channels. The MASK parameter specifies which of the Amiga's four audio channels
the sound should be played through, from one to 15:

Table 9.1 : Audio masks

MASK Channel @ Channel 1 Channel 2 Channel 3

1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

The optional VOL parameters are used to set the volume of the four audio channels. Volume settings
should be in the range zero (silence) to 64 (loudest). The first VOL parameter specifies the volume of the
first "on" audio channel, the sencond VOL for the next "on" audio channel and so on.

If any VOL parameters are not included then their associated channel will be given a volume of 64.

For example:

;5 *¥** Pump up the ...
; *** Filename - Volume.bb2

; *** Initialise sound object

238

9.Audio

InitSound 0,32
; *** Create sound data using sine waveform
For A=0 To 31

SoundData 0,A,Sin(A*150)*127
Next A

*** pPlay sound
LoopSound 0,1

*** Fade out volume
For V=64 To © Step -1

ViWait

Volume 1,V
Next V

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

FILTER

Mode(s): Amiga/Blitz
Statement: toggle the Amiga's low pass audio filter
Syntax: Filter On/Off

The FILTER statement is used to toggle sound distortion with the Amiga's audio filter. Some people
prefer FILTER to be set to ON, whilst other musical connaisseurs prefer it to remain OFF - it really is a
matter of preference. Here is an example:

*** Engine sound
; ¥** Filename - Filter.bb2

; *¥** TInitialise sound object
InitSound 0,32
*** Create sound data using sine waveform
For A=0 To 31
SoundData ©,A,Sin(A*50)*127
Next A
*** play sound 100 times
For B=0 To 100
*¥** Toggle filter on
Filter On
; *** Play sound
Sound 0,15
VWait 3
; *¥** Toggle filter off
Filter Off
*** play sound
Sound 9,15
Next B

239

9.Audio

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

9.2 Rave the waves

INITSOUND

Mode(s): Amiga/Blitz
Statement: intialize a sound object
Syntax: InitSound SOUND#,LENGTH[,PERIOD[,REPEAT]]

This statement is used to initialise a sound object. Sound objects can be simple sine or square
waveforms, created with SOUNDDATA.

The LENGTH parameter specifies the length, in bytes, of the sound object. This must be less than 128K
and an even number!

The optional PERIOD parameter, if included, allows you to specify the default pitch for the sound object.

The optional REPEAT parameter is used in conjunction with the LOOPSOUND statement. It specifies a
position in the sound at which repeating should begin. Consult LOOPSOUND for more information.

Here's an example:

; *¥** InitSound example
; *** Filename - InitSound.bb2

; *¥** TInitialise sound object
InitSound 0,32
; *** Create sound data using sine waveform
For A=0 To 31

SoundData 0,A,Sin(A*2)*127
Next A
; ¥** Play sound (loop)
LoopSound 0,15
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

240

9.Audio

SOUNDDATA

Mode(s): Amiga/Blitz
Statement: define a wave form
Syntax: SoundData SOUND#,O0FFSET,DATA

SOUNDDATA is used to define the waveform of a sound object. It alters one byte of sound data at the
specified OFFSET. The DATA parameter specifies the actual byte to be placed into the sound, and should
be in the range -128 to +127. For example

; *** SoundData example
; ¥** Filename - SoundData.bb2

; *** Initialise sound object
InitSound 0,32
; ¥** Create sound data using a waveform
For A=0 To 31
If A16
SoundData 0,A,127
Else
SoundData ©,A,-128
EndIf
Next
; *¥** Play sound (loop)
LoopSound 0,15
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

9.3 Samples

9.3.1 Playing samples from memory

LOADSOUND

Mode(s): Amiga
Statement: load a sample into memory
Syntax: LoadSound SOUND#, "FILENAME"

This statement loads a sample into memory. The sample should be in 8SVX IFF format, otherwise an
error will be generated. Try this example:

241

9.Audio

; *** LoadSound example
; *** Filename - LoadSound.bb2

; *** Load sound sample from disk
LoadSound ©,"FILENAME.IFF"

; *** Play sound

Sound 0,1

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

SOUND

Mode(s): Amiga/Blitz
Statement: play a sample from memory
Syntax: Sound SOUND#,MASK[,VOL1][,VOL2][,VOL3][,VOL4]

The SOUND statement is used to play a sample from memory. The MASK parameter specifies which of
the Amiga's four audio channels the sample should be played through, from one to 15:

Table 9.2 : Audio masks

MASK Channel @ Channel 1 Channel 2 Channel 3

1 on off off off
2 off on off off
3 on on off off
4 off off on off
5 on off on off
6 off on on off
7 on on on off
8 off off off on
9 on off off on
10 off on off on
11 on on off on
12 off off on on
13 on off on on
14 off on on on
15 on on on on

The optional VOL parameters are used to set the volume of the four audio channels. Volume settings
should be in the range zero (silence) to 64 (loudest). The first VOL parameter specifies the volume of the
first "on" audio channel, the sencond VOL for the next "on" audio channel and so on.

If any VOL parameters are not included then their associated channel will be given a volume of 64.

242

9.Audio

For example, the following syntax is used:

Sound ©,12,32,64

This would cause channels zero and one to be "off", and channels two and three to be "on". Because
channels two and three are the first "on" channels, channel two would be given a volume setting of 32,
and channel three a setting of 64.

If this syntax was used instead then channel three would be set to 32, as it is the only "on" audio
channel:

Sound ©,8,32

Here is a full example:

;5 *¥** A Sound example
*** Filename - Sound.bb2

*** Load sound sample from disk
LoadSound ©,"FILENAME.IFF"
; *** Play sound
; *** (Channels 1 and 2 are half volume)
; *** (Channels 3 and 4 are full volume)
Sound ©0,15,32,32,64,64
; ¥** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

LOOPSOUND

Mode(s): Amiga/Blitz
Statement: play and loop a sample from memory
Syntax: LoopSound SOUND#,MASK[,VOL1][,VvOL2][,VOL3][,VOL4]

This statement works identically to SOUND, except the sample will loop. Consult the LOADSOUND
statement for parameter information. For example:

*** | oopSound
*** Filename - LoopSound.bb2

*** Load sound sample from disk
LoadSound ©,"FILENAME.IFF"

243

9.Audio

; ¥** Play sound (loop)

LoopSound 0,15

; ¥** Wait for a mouse click
MouseWait

; *** Return to Blitz Basic 2 editor
End

9.3.2 Playing samples from disk

DISKPLAY

Mode(s): Amiga
Statement: play a sample straight from disk
Syntax: DiskPlay "FILENAME",MASK[,VOL1][,VOL2][,VOL3][,VOL4]

The DISKPLAY statement is used to play an 8SVX IFF sound sample straight from disk. It suspends
program execution until the sample has stopped playing. DISKPLAY allows samples of any length,
whereas LOADSOUND restricts its samples to 128K in length. Consult the LOADSOUND statement for
parameter information. Example:

; *** DiskPlay example
; *** Filename - DiskPlay.bb2

; ¥** Load sound sample from disk and play
DiskPlay "FILENAME.IFF",1,64

; ¥** Wait for a mouse click

MouselWait

; *** Return to Blitz Basic 2 editor

End

9.3.3 Manipulating samples

DISKBUFFER

Mode(s): Amiga/Blitz
Statement: set size of DiskPlay memory buffer
Syntax: DiskBuffer LENGTH

This is used to set the size of the DISKPLAY memory buffer. The buffer is initially set to 1024 bytes,
although this may be increased or decreased as needed. However, decreasing the memory buffer may
cause a loss in sound quality. Here's an example:

244

9.Audio

; ¥** DiskBuffer example
; *** Filename - DiskBuffer.bb2

F$="A SAMPLE"
; ¥** Play sample normally
DiskPlay F$,15
; ¥** Wait for a mouse click
MouseWait

*** Reduce buffer
DiskBuffer 128

*** play sample again (altered)
DiskPlay F$,15
; ¥** Wait for a mouse click
MouseWait
; *** Return to Blitz Basic 2 editor
End

PEEKSOUND

Mode(s): Amiga/Blitz
Function: return the byte of a sample
Syntax: PeekSound SOUND#,0FFSET

PEEKSOUND returns the byte of a sample at the specified offset of a sound object. For example:

*** peekSound example ** Filename - PeekSound.bb2
; ¥** Initialise sound object
InitSound 0,32
For A=0 To 31
; ¥** Set first half to max byte
If A<16
SoundData 0,A,127
Else
*** Set second half to min byte
SoundData ©,A,-128
EndIf
Next A
; *** Output all sample bytes
For B=0 To 31
NPrint PeekSound(@,B)

Next B
; ¥** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

245

9.Audio

9.4 Playing Tracker modules

A Tracker is a sequencing program which allows you to enter musical motes and arrange them to create
a song, or module. The standard Tracker program on the Amiga is the Public Domain package
Protracker. Protracker is based on the ageing Soundtracker program, a commercial piece of software
which was unwittingly released into the Public Domain.

The latest version of Protracker is available from 17 Bit Software, at the following address:

17 Bit Software

1st Floor Offices
2/8 Market Street
Wakefield

West Yorkshire

WF1 1DH

Tel: (01924) 366982

LOADMODULE

Mode(s): Amiga
Statement: load a Tracker module
Syntax: LoadModule MODULE#,"FILENAME"

PLAYMODULE

Mode(s): Amiga/Blitz
Statement: play a Tracker module
Syntax: PlayModule MODULE#

To load a Tracker module into memory, use this statement. The MODULE# parameter is a unique
identification value. This allows you to store more than one module in memory at once.

The PLAYMODULE statement is used to start a Tracker module playing from memory. MODULE# is the
number of the module to play. For example:

; *¥** Loading a tracker module
; ¥** Filename - LoadModule.bb2

; *** Open a basic screen

Screen 0,3, "Module Master..."

; ¥** Load Tracker module from disk
LoadModule @, "FILENAME.MOD"

; *** Start the module playing
PlayModule ©

; ¥** Wait for a mouse click
MouseWait

246

9.Audio

; ¥** Return to Blitz Basic 2 editor
End

STOPMODULE

Mode(s): Amiga/Blitz
Statement: stop all Tracker modules
Syntax: StopModule

The STOPMODULE statement is used to stop ALL Tracker modules currently being played.

FREE MODULE

Mode(s): Amiga/Blitz
Statement: erase a Tracker module from memory
Syntax: Free Module MODULE#

If you want to disguard a Tracker module from memory then use this statement. The MODULE#
parameter specifies a module to erase. For example:

; *¥** Stop!
; *** Filename - StopModule.bb2

; *** Open another screen

Screen 0,3,"Module Master..."

; ¥** Load Tracker module from disk
LoadModule @, "FILENAME.MOD"

; *** Start module playing
PlayModule ©

; ¥** Wait for a mouse click
MouseWait

; *** Stop module from playing
StopModule

; *** Remove module from memory
Free Module ©

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

247

9.Audio

9.5 Med modules

Med, or more recently OctaMed, is a superior music Tracker. Med modules are created in much the
same way as Tracker ones, by playing notes on the Amiga's keyboard. Each note can be a different
sample, and patterns of up to 64 steps can be created and pasted together to form a musical
masterpiece.

Other notable options include:

* Sample editor

* Synthesised sound editor
* MIDI support

® On-line help

The latest incarnation of Med, namely OctaMed Pro V5, allows you to enter eight tracks of audio
instead of four. This is achieved by playing two samples out of each audio channel. However, Blitz Basic
does not currently support eight channel modules, so you are advised to stick with four.

OctaMed Pro V5 requires Kickstart 2.04 or later, and is available through Seasoft Computing, priced
£30.00, from the following address:

Seasoft Computing Unit 3 Martello Enterprise Centre Courtwick Lane Littlehampton West Sussex
England BN17 7PA Tel: (01903) 850378

9.5.1 Playing Med modules

LOADMEDMODULE

Mode(s): Amiga
Statement: load a Med module
Syntax: LoadMedModule MODULE#,"FILENAME"

The LOADMEDMODULE statement loads any four channel OctaMed module. The following commands
support upto and including version 3 of the Amiganuts Med standard.

STARTMEDMODULE

Mode(s): Amiga/Blitz
Statement: initialise a Med module in memory
Syntax: StartMedModule MODULE#

STARTMEDMODULE is responsible for initialising the module including linking after it is loaded from
disk using the LOADMEMODULE statement. It can also be used to restart a module from the beginning.

248

9.Audio

PLAYMED

Mode(s): Amiga/Blitz
Statement: play a Med module
Syntax: PlayMed

The PLAYMED statement plays the current Med module. It must be called every 50th of a second, either
on an interrupt (#5), or after a VWAIT statement.

STOPMED

Mode(s): Amiga/Blitz
Statement: stop the current Med module
Syntax: StopMed

STOPMED will cause any Med module to stop playing.

Here is a full example which demonstrates the correct procedure for loading and playing a Med
module:

; *** Playing a Med module
; *** Filename - PlayMed.bb2

; *¥** Load Med module from disk
LoadMedModule @, "MED_MODULE"
; *** Initialise Med module
StartMedModule ©
Repeat
; *** Play module every 50Hz
Viait
PlayMed
Until Joyb(©)>0
; *¥** Stop module from playing

StopMed

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

249

9.Audio

9.5.2 Manipulating Med modules

SETMEDVOLUME

Mode(s): Amiga/Blitz
Statement: set the volume of a Med module
Syntax: SetMedVolume VOLUME

The SETMEDVOLUME statement changes the volume of a Med module. All music channels are affected
by this statement. For example:

5 *** Music fading
; ¥** Filename - SetMedVolume.bb2

; ¥** Load Med module from disk
LoadMedModule @, "MED_MODULE"
; ¥** TInitialise Med module
StartMedModule ©
Repeat
; ¥** Play module every 50Hz
ViWait
PlayMed
Until Joyb(@)>0
; ¥** Fade out module volume
For A=64 To 1 Step -1
ViWait
PlayMed
SetMedVolume A
Next A
; ¥** Stop module from playing
StopMed
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

GETMEDVOLUME

Mode(s): Amiga/Blitz
Function: return the current volume setting of an audio channel
Syntax: g=GetMedVolume (CHANNEL)

This function returns the current volume setting of the specified audio channel. GETMEDVOLUME may
be used to create graphic equalisers that move in time with the music. Try the following example:

250

9.Audio

; *** GetMedVolume example
; ¥** Filename - GetMedVolume.bb2

; *¥** | oad Med module from disk
LoadMedModule ©, "MED_MODULE"
; ¥** Initialise Med module
StartMedModule ©
Repeat
; *** Play module every 50Hz
Viait
PlayMed
; *** Output volume of channel @
If Int(Rnd(100))=0
A=GetMedVolume(9)
NPrint "Volume @ = ",A
EndIf
Until Joyb(©)>0
; *** Stop module from playing
StopMed
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

SETMEDMASK

Mode(s): Amiga/Blitz
Statement: mask a Med audio channel
Syntax: SetMedMask CHANNEL

SETMEDMASK allows the user to mask out an audio channel. The CHANNEL parameter specifies the
number of a channel to mask, or silence. Try the following example:

; ¥** Masking example
; *** Filename - SetMedMask.bb2

; ¥** Load Med module from disk
LoadMedModule @, "MED_MODULE"
; ¥** Tnitialise Med module
StartMedModule ©
; *** Mask all channels except channel 3
SetMedMask @
SetMedMask 1
SetMedMask 2
Print "Channel 3 playing only"
Repeat

; *** Play module every 50Hz

251

9.Audio

ViWait

PlayMed
Until Joyb(@)>0
; *¥** Stop module from playing
StopMed
; ¥** Wait for a mouse click
MouselWait
; ¥** Return to Blitz Basic 2 editor
End

JUMPMED

Mode(s): Amiga/Blitz
Statement: change pattern being played in current Med module
Syntax: JumpMed PATTERN

The JUMPMED statement is used to change the pattern being played in the current Med module. This is
useful if you want the music to change in your games at different points. Say, for example, that you
wanted a short piece of music to play once the player completed the game. You would write the music
so that a few patterns (the end-game piece) are never played by the main module. These could then be
jumped to, when required, by the JUMPMED statement. Here is an example:

5 *** JumpMed example
; *** Filename - JumpMed.bb2

; ¥** Load Med module from disk
LoadMedModule ©,"MED_MODULE"
; ¥** Tnitialise Med module
StartMedModule ©
Repeat
; *** Play module every 50Hz
ViWait
PlayMed
;5 *** Jump between module patterns
If Int(Rnd(100))=0
A=Int(Rnd(10)+1)
NPrint "Jumping to pattern ",A
JumpMed A
EndIf
Until Joyb(©)>0
; ¥** Stop module from playing

StopMed

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

252

9.Audio

GETMEDNOTE

Mode(s): Amiga/Blitz
Function: return current note playing through a channel
Syntax: n=GetMedNote (CHANNEL)

This function returns the current note playing through the specified audio channel. Here is an example:

*** GetMedNote example
**¥* Filename - GetMedNote.bb2

*** load Med module from disk
LoadMedModule @, "MED_MODULE"
*** Initialise Med module
StartMedModule ©
Repeat
*** Play module every 50Hz
Viait
PlayMed
*** Qutput current note (channel 0)
A=GetMedNote(9)
Print A
Until Joyb(@)>0
; ¥** Stop module from playing

StopMed

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

GETMEDINSTR

Mode(s): Amiga/Blitz
Function: return current instrument playing through a channel
Syntax: i=GetMedInstr (CHANNEL)

GETMEDINSTR returns the current instrument playing through the specified audio channel:
*¥** GetMedInstr example
*** Filename - GetMedInstr.bb2
*** Load Med module from disk
LoadMedModule @, "MED_MODULE"

*** Tnitialise Med module
StartMedModule ©

253

9.Audio

Repeat
; *** Play module every 50Hz
ViWait
PlayMed
; ¥** OQutput instrument in a given channel
If Int(Rnd(100))=0
A=Int(Rnd(3)+1)
B=GetMedInstr(A)
NPrint "Instrument (channel ",A,") = ",B
EndIf
Until Joyb(©)>0
; ¥** Stop module from playing
StopMed
; ¥** Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

9.6 Speech

One of the fun utilities provided with the Amiga was the narrator device; this allowed pre-AGA Amigas
to "talk". For reasons known only to themselves, Commodore chose to remove the "speech” facility
from Workbench 3.

A recent update has added speech to Blitz Basic 2, so that owners of all Amigas (including those
equipped with the AGA chipset) can access this fabulous facility through BASIC.

9.6.1 Walkie Talkie

SPEAK

Mode(s): Amiga
Statement: speak a string
Syntax: Speak TEXT$

The SPEAK statement is used to pass a string of phonemes to the Amiga's voice synthesizer. SPEAK
automatically converts any string to phonetics, so you don't need to worry about getting your hands
dirty with the translation. Here is an example:

; ¥** Speak demo
; *** Filename - Speak.bb2

Repeat
NPrint ""
; ¥** Input a string to speak
NPrint "Please input some stuff:>"
A$=Edit$(70)
5 FFF Talk!!!

254

9.Audio

Speak A$
Until Ag$=""

*** Return to Blitz Basic 2 editor
End

SETVOICE

Mode(s): Amiga
Statement: set style of speech
Syntax: SetVoice RATE,PITCH,EXPRESSION,SEX,VOLUME,FREQUENCY

SETVOICE can be used to alter the style of speech by changing the rate, pitch, expression, sex, volume
and frequency of the Amiga's voice synthesizer:

Table 9.3 : SETVOICE parameters

Parameter Description Range Default
RATE Words per minute 40-400 150
PITCH Baseline pitch in Hz 65-320 110
EXPRESSION ©=robot l1=natural 2=manual 0-2 1

SEX 0=male 1=female 0-1 0
VOLUME Volume 0-64 64
FREQUENCY Samples per second 0-22,200 22,200

Here is an example:

; ¥** A fine voice
*** Filename - SetVoice.bb2

; *** Toggle audio filter on
Filter On
Repeat
NPrint ""
**¥* Tnput a string to speak
NPrint "Enter some words or numbers to spell:>"
A$=Edit$(70)
A=1
For B=0 To Len(A$)
*** Split up string into characters
B$=Mid$ (A$,A,1)
Let A+1
VWait 5
*** Alter audio voice randomly
RATE=40+Rnd(360)
PITCH=65+Rnd(255)
SEX=Rnd(1)

255

9.Audio

SetVoice RATE,PITCH,1,SEX,64,22200
; *** Speak next letter of string
Speak B$
Next B
; ¥** Speak entire string
Speak A$
Until A$=""
; ¥** Return to Blitz Basic 2 editor
End

9.6.2 It's a foreign language

TRANSLATE$

Mode(s): Amiga
Function: return the phonetic equivalent of a string
Syntax: phonetic$=Translate$(TEXT$)

TRANSLATES returns the phonetic equivalent of a string. For example

; *** Translate$ example
; *** Filename - Translate$.bb2

NPrint ""

NPrint "Enter a sentence:"
A$=Edit$(70)

NPrint"Phonetic =",Translate$(A$)

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

PHONETICSPEAK

Mode(s): Amiga
Statement: speak a phonetic string
Syntax: PhoneticSpeak TEXT$

This statement is identical to the SPEAK statement, except the string to speak must contain legal
phonemes. TEXT$ should be created by the TRANSLATES$ function. Try the following example:

256

9.Audio

; *** PhoneticSpeak example
; *** Filename - PhoneticSpeak.bb2

NPrint ""

NPrint "Enter a sentence:"
A$=Edit$(70)

PhoneticSpeak Translate$(A$)

; ¥** Wait for a mouse click
MouseWait

; *¥** Return to Blitz Basic 2 editor
End

9.6 End-of-Chapter summary

The VOLUME statement controls the volume of sound which passes through one or more of the
Amiga's four sound channels.

The FILTER statement is used to toggle sound distortion with the Amiga's audio filter.
INITSOUND and SOUNDDATA are used to create sound data from scratch.

Sound samples are played using LOADSOUND, SOUND and LOOPSOUND. Samples can be played
straight from disk using the DISKPLAY statement.

Blitz Basic can play Tracker modules and four channel Med, or OctaMed, modules.

The Amiga can be made to "talk" using the SPEAK statement, and the style of this speech can be altered
using SETVOICE.

257

Chapter 10 : Screens

This chapter explains how Intuition screens are created and manipulated by Blitz Basic 2.
A screen is an area of the display that shares the same attributes, such as size, resolution and colours.

The Amiga can have several screens open at once. However, unlike Slices, there are no limits placed
upon how multiple screens may be arranged. Multiple screens can be positioned vertically on top of
each other and may overlap.

10.1 Defining a screen

SCREEN

Mode(s): Amiga

Statement: open an Intuition screen

Syntax: Screen SCREEN#,MODE[,TITLE$]

Syntax 2: Screen SCREEN#,X,Y,W,H,MODE,VIEWMODE,T$,D, B[, BITMAP#]

10.1.1 Syntax 1

The SCREEN statement is used to open an Intuition screen. The first syntax uses three parameters:
SCREEN# (the screen number), MODE and the optional TITLE$ parameter.

The MODE parameter specifies the number of bitplanes for the screen, ranging from (1) to (6). The
value you specify determines the number of colours that can be displayed on the screen, as shown in
the following table (AGA screen modes are not currently supported by Blitz Basic 2):

Table 10.1 : Number of colours per bitplane

Bitplanes Colours

1 2
2 4
3 8
4 16
5 32
6 64

As with Slices, high-resolution screens can be opened by adding eight to this figure. High-resolution
screens may use a maximum of four bitplanes (16 colours). Adding 16 to the MODE parameter creates
an interlaced screen.

Note that the height of the screen will be 256 pixels on a PAL Amiga, or 200 pixels on an NTSC Amiga.

258

10.Screens

Here are some examples:

*¥** Screen example 1
; *** Filename - Screenl.bb2

; ¥** Untitled low-res screen (3 bitplanes)
Screen 0,3
*¥** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End

; *** Screen example 2
*** Filename - Screen2.bb2

*** Titled hi-res screen (2 bitplanes)
Screen 0,10,"Blitz"
**¥* Wait for a mouse click
MouseWait
; *¥** Return to Blitz Basic 2 editor
End

10.1.2 Syntax 2

The second SCREEN syntax is more involved and requires more parameters to operate:

Table 10.2 : SCREEN parameters

Parameter Function

X Horizontal position of top-left of screen
Y Vertical position of top-left of screen

W Width of screen (at least 320)

H Height of screen

MODE Number of bitplanes (up to 6 - 64/4096 colours)
VIEWMODE Screen ViewMode

T$ Screen title

D Detail pen colour

B Block pen colour

[BITMAP#] Attach BitMap to a screen

It is worth mentioning that screen widths must be a multiple of 16 and they are always at least the full
width of the viewable area (a minimum of 320 pixels). The height of the screen will be 256 pixels on a
PAL Amiga, or 200 pixels on an NTSC Amiga.

259

10.Screens

All of the other parameters are self-explanatory, except perhaps for VIEWMODE. VIEWMODE is a special
parameter which enables the Blitz Basic programmer to create Half-Brite, HAM, Interlaced, High-
resolution and Super-hi-res screens.

Table 10.3 : Screen ViewModes

VIEWMODE Description

$0000 Low-res

$0004 Interlace

$0080 Half-brite

$0800 HAM

$8000 Hi-res

$8020 Super-hi-res (AGA only - max 2 bitplanes)

*** Low-resolution Screen example
*** Filename - LowResScreen.bb2

Screen 0,0,100,320,100,3,%0000, "Low-res",1,2
*** Wait for a mouse click

MouseWait
*** Return to Blitz Basic 2 editor

End

*** Hi-resolution Screen example
*** Filename - HiResScreen.bb2

Screen 0,0,0,640,200,4,%$8000, "Hi-res",1,0
*** Wait for a mouse click

MouseWait
*** Return to Blitz Basic 2 editor

End

*** Super-hi-res Screen example
*** Filename - SuperHiresScreen.bb2

Screen 0,0,0,1280,256,2,$8020, "Super-hi-res",1,0
*** Wait for a mouse click

MouseWait
*** Return to Blitz Basic 2 editor

End

260

10.Screens

10.1.3 Interlaced screens

Interlaced screens have twice the number of vertical lines as low-resolution screens. Like low-resolution
mode, interlace format allows up to 64 colours to be displayed. However, interlaced screens induce
flicker on some computer screens (use a multi-sync monitor to avoid this):

*** Tnterlaced Screen example
*** Filename - InterlacedScreen.bb2

Screen 0,0,0,320,200,3,%0004, "Interlace",1,0
**¥* Wait for a mouse click

MouseWait
*** Return to Blitz Basic 2 editor

End

10.1.4 Extra Half-Brite

Usually known as just "Half-Brite", this is a special display mode which doubles the number of colours
on screen by dublicating the existing palette at half its brightness. This doubles the number of available

screen colours to 64:

*** Half-Brite Screen example
*** Filename - HalfBriteScreen.bb2

Screen 0,0,0,320,200,6,%0080, "Half-Brite",1,0
ScreensBitMap 9,0
For A=0 To 31
Boxf 10,22+X,30,24+X,A
Boxf 60,22+X,80,24+X,A+32
Let X+5
Next
; ¥** Wait for a mouse click

MouseWait
**¥* Return to Blitz Basic 2 editor

End

10.1.5 Hold And Modify

The Hold And Modify display mode (HAM) uses only 16 colour registers, but manages to display the full
Amiga colour palette - all 4096 colours on the screen at the same time. A HAM colour is formed by
taking the RGB value of the preceding pixel on the screen, and substituting a new value for one of the

RGB components:

261

10.Screens

*** HAM Screen example
; *** Filename - HAMScreen.bb2

Screen 0,0,0,320,200,6,$0800, "HAM",1,0
ScreensBitMap 0,0
For X=1 To 81
For A=0 To 50
Boxf 1+X,12+Y,13+X,17+Y,A
Let Y+4
Next
Let X+9
Y=0
Next
*** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End

10.1.6 Screen BitMaps

Screens can also display graphics from a previously initialised BitMap, by the inclusion of the optional
BITMAP# parameter. This is of use when the BitMap graphics have been created BEFORE the screen

definition.

The SCREENSBITMAP statement can be used to attach BitMap graphics to a screen AFTER it has been
opened (consult Chapter 6 for more information):

*¥** Screen example 2
; *** Filename - Screen2.bb2

*** Define BitMap (3 bitplanes)
BitMap ©,320,256,3
*** Draw BitMap graphics
For A=1 To 50
Circlef Rnd(320),Rnd(150)+50,Rnd(20)+10,Rnd(5)+1
Next A
; *** Open screen and attach BitMap
Screen 0,0,0,320,DispHeight,3,0,"Title",1,0,0
; ¥** Wait for a mouse click
MouseWait
*¥** Return to Blitz Basic 2 editor
End

262

10.Screens

10.2 Controlling screens

CLOSESCREEN

Mode(s): Amiga
Statement: close a screen
Syntax: CloseScreen SCREEN#

As its name implies, CLOSESCREEN closes the specified screen and removes it from the display:

; *** CloseScreen example
; *¥** Filename - CloseScreen.bb2

; *** Open screen

Screen 0,1,"Closing down..."

; *** Pause briefly

ViWait 50

; *** Remove screen from display
CloseScreen ©

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

10.3 Screen priority

As multiple screens are opened, they are positioned in front of one another. The following commands
can be used to affect screen priority.

HIDESCREEN

Mode(s): Amiga
Statement: move a screen to back of display
Syntax: HideScreen SCREEN#

The HIDESCREEN statement moves the specified screen to the back of the current display. It places it
behind all other opened screens. Try the following example:

; *** HideScreen example
; ¥** Filename - HideScreen.bb2

; *** Open screen

Screen 0,2,"Hide and seek"
; ¥** Pause briefly

VWait 100

263

10.Screens

*** Move screen to back of display
HideScreen ©

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

SHOWSCREEN

Mode(s): Amiga
Statement: show a screen
Syntax: ShowScreen SCREEN#

SHOWSCREEN moves the specified screen to the front of the current display. For example:

*¥** ShowScreen example
; ¥** Filename - ShowScreen.bb2

*** Open 2 screens
Screen 0,2, "Back"
Screen 1,10, "Front"
For A=1 To 5
*** Pause briefly
ViWait 50
*** Toggle screen priority
SCR=1-SCR
ShowScreen SCR
Next A
*¥** Return to Blitz Basic 2 editor
End

10.4 Manipulating screens

MOVESCREEN

Mode(s): Amiga
Statement: move a screen
Syntax: MoveScreen SCREEN#,X,Y

MOVESCREEN is used to move a screen about the current display. The X and Y parameters specify the
amount for the screen to be moved. Here are some examples:

264

10.Screens

*** MoveScreen example
; ¥** Filename - MoveScreen.bb2

*** Open screen
Screen 0,2,"Going down..."
*** Move screen down display
For Y=1 To 30
MoveScreen 0,0,Y
Next Y
; *¥** Return to Blitz Basic 2 editor
End

BEEPSCREEN

Mode(s): Amiga
Statement: flash screen
Syntax: BeepScreen SCREEN#

The BEEPSCREEN statement flashes a specified screen (SCREEN#). That's it! Try the following example:

*** BeepScreen example
; *** Filename - BeepScreen.bb2

*¥** Open screen
Screen 0,2,"Flasher”

*** Pause briefly
ViWait 50
; *** Flash screen 5 times
For A=1 To 5

BeepScreen ©

ViWait 50
Next A

*** Return to Blitz Basic 2 editor
End

WBTOSCREEN

Mode(s): Amiga
Statement: assign the Workbench screen to a screen object number
Syntax: WbToScreen SCREEN#

The WBTOSCREEN statement assigns the Workbench screen a screen number. This allows you to
perform any of the screen functions on the Workbench screen. Upon execution, the Workbench screen

265

10.Screens

becomes the current screen. For example:

; *** WbToScreen example
*** Filename - WbToScreen.bb2

; ¥** Assign Workbench screen for manipulation
WbToScreen ©
; *** Pause briefly
ViWait 100
; ¥** Flash screen
BeepScreen 0
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

FINDSCREEN

Mode(s): Amiga
Statement: assign an object number to a screen
Syntax: FindScreen SCREEN#[,TITLE$]

This statement will search for a screen and give it an object number. If the optional TITLE$ parameter is
specified then a screen that has this name will be searched for, otherwise the front screen will be given
the object number SCREEN#. If the screen is found then it becomes the current screen. Here is an
example:

*** FindScreen!
*** Filename - FindScreen.bb2

*** Search for screen ©
FindScreen ©
; *** Open window on found screen
Window 0,0,0,100,100,0, "Found it!",0,1
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

SHOWBITMAP

Mode(s): Amiga
Statement: show a BitMap on a screen
Syntax: ShowBitMap [BITMAP#]

266

10.Screens

The SHOWBITMAP statement is used to display a BitMap on the current screen. It is a system-friendly
version of the Slice SHOW statement. This allows the Blitz Basic programmer to create double-buffered
animations on Intuition screens. Here is an example:

; *¥** ShowBitmap example
*** Filename - ShowBitmap.bb2

*** Open BitMap (3 bitplanes)
BitMap ©,320,DispHeight,3
; ¥** Plot random starfield on BitMap
For A=1 To 200

Plot Rnd(320),Rnd(DispHeight),Rnd(5)+1
Next A

*** Open screen
Screen 9,3

*** Alter screen's palette
RGB 0,0,0,0

*** Attach BitMap to screen
ShowBitMap @
; ¥** Wait for a mouse click
MouseWait
; ¥** Return to Blitz Basic 2 editor
End

SCREENPENS

Mode(s): Amiga
Statement: configure the 10 default pens used for system gadgets
Syntax: ScreenPens (TEXT, SHINE, SHADOW, FILL, TEXT,BACK,HIGHLIGHT)

The SCREENPENS statement is used to configure the 10 default pens used for system gadgets in
Workbench 2.0/3.0. All screens opened after the SCREENPENS statement will use these pens. Try the
following example which brightens up the dullest of Intuition screens:

*** ScreenPens example
*** Filename - ScreenPens.bb2

*** Set screen pens

ScreenPens 1,2,3,4,5,6,7

Screen 0,3, "Hello"
*** Simple text gadget

TextGadget 0,30,30,0,0,"Click on me"
*** Open window and attach gadget

Window ©,0,20,300,200,0, "Window",1,2,0
*** Qutput defined colours

WLocate 0,6

For A=1 To 7

267

10.Screens

WColour A

NPrint A
Next A
; ¥** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

10.5 Screen functions

SMOUSEX

Mode(s): Amiga
Function: return horizontal mouse position relative to left edge of screen
Syntax: x=SMouseX

The SMOUSEX function returns the horizontal mouse position relative to the left edge of the currently
used screen:

*¥** SMouseX example
; *** Filename - SMouseX.bb2

; *** Open simple screen
Screen 0,3, "Mouse co-ords"

*** Grab screen's BitMap
ScreensBitMap 0,0

*** Enable text output onto BitMap
BitMapOutput ©

*** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette ©
Repeat

*** Return horizontal location of mouse

Locate 0,2 : Print "X=",SMouseX," "
Until Joyb(©)>0
; *** Return to Blitz Basic 2 editor
End

SMOUSEY

Mode(s): Amiga
Function: return vertical mouse position relative to top of screen
Syntax: y=SMouseY

268

10.Screens

The SMOUSEY function returns the vertical mouse position relative to the top of the currently used
screen. For example:

*¥** SMouseY example
; *** Filename - SMouseY.bb2

*** Open simple screen
Screen 0,3, "Mouse co-ords"

*** Grab screen's BitMap
ScreensBitMap 0,0

*** Enable text output onto BitMap
BitMapOutput ©
; *** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette ©
Repeat

*** Return vertical location of mouse

Locate 0,2 : Print "Y=",SMouseY," "
Until Joyb(©)>0
; ¥** Return to Blitz Basic 2 editor
End

VIEWPORT

Mode(s): Amiga
Function: return the location of screen's ViewPort
Syntax: v=ViewPort (SCREENi#)

VIEWPORT is used to return the location of a screen's ViewPort. The ViewPort address can be used in
conjunction with the Amiga's system libraries:

; *¥** ViewPort Example
; *** Filename - ViewPort.bb2

; ¥** Use Workbench screen
WbToScreen ©
; *¥** Output scren's ViewPort
NPrint ViewPort(0)

*** Wait for a mouse click
MouseWait

*** Return to Blitz Basic 2 editor
End

269

10.Screens

10.6 IFF screens

IFF stands for Interchangeable File Format. Devised by Electronic Arts, it has been adopted as the
standard way of storing pictures and sound on the Amiga.

This section deals with the IFF graphics which can be created with paint packages, such as Deluxe Paint
V.

10.6.1 Loading and saving screens

LOADSCREEN

Mode(s): Amiga
Statement: load a screen into a screen object
Syntax: LoadScreen SCREEN#,"FILENAME.IFF"[,PALETTE#]

LOADSCREEN is used to load an IFF picture ("FILENAME.IFF") into the screen specified by SCREEN#. If
the optional PALETTE# parameter is included then the picture's palette will be loaded into that palette
object. For example:

; *** LoadScreen example
; ¥** Filename - LoadScreen.bb2

; ¥** Open screen (32 colours)
Screen 0,5,"Left mouse button exits"
; *** Load screen and palette
LoadScreen 0,"FILENAME.IFF",0Q

; *¥** Attach palette to screen

Use Palette ©

; ¥** Wait for a mouse click
MouselWait

; ¥** Return to Blitz Basic 2 editor
End

SAVESCREEN

Mode(s): Amiga
Statement: save a screen to disk
Syntax: SaveScreen SCREEN#,"FILENAME.IFF"

The SAVESCREEN statement saves a screen (SCREEN#) to disk as an IFF picture file ("FILENAME.IFF"):

270

10.Screens

*** SaveScreen example
; ¥** Filename - SaveScreen.bb2

*** Open screen and attach BitMap
Screen 0,3, "SaveScreen example”
ScreensBitMap 9,0
; *¥** Alter screen's palette
PalRGB 0,0,0,0,0
Use Palette ©
; ¥** Plot a random starfield
For A=1 To 100

Plot Rnd(320),Rnd(200)+30,Rnd(6)+1
Next A

*** Save IFF file
SaveScreen 0,"df0:STARS.IFF"

Cls o
VWait 20

*** Load new file
LoadScreen 0,"df@:STARS.IFF"

; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

10.6.2 ILBM

ILBM stands for InterLeaved BitMap - think of it as a posh name for an IFF file. The following commands
are used to obtain information about IFF files, including size, number of colours and resolution.

ILBMINFO

Mode(s): Amiga
Statement: initialize a file for ILBM examination
Syntax: ILBMInfo "FILENAME"

Before an ILBM file can be investigated, it first has to be initialized using the ILBMINFO statement. The
"FILENAME" parameter is the name of the file to examine:

; *¥** ILBMInfo example
5 *** Filename - ILBMInfo.bb2

; ¥** TFF filename
F$="FILENAME.IFF"
; ¥** TInitialize file
ILBMInfo F$

*** Wait for a mouse click
MouseWait

271

10.Screens

**¥* Return to Blitz Basic 2 editor
End

ILBMWIDTH

Mode(s): Amiga
Function: return the width of an ILBM image
Syntax: w=ILBMWidth

This function returns the width of an initialized ILBM image, in pixels:

5 ¥** TLBMWidth example
*** Filename - ILBMWidth.bb2

; *¥** IFF filename
F$="FILENAME.IFF"
; ¥** Initialize file
ILBMInfo F$
; ¥** Output picture's width
NPrint ILBMWidth," pixels"
*** Wait for a mouse click
MouselWait
*** Return to Blitz Basic 2 editor
End

ILBMHEIGHT

Mode(s): Amiga
Function: return the height of an ILBM image
Syntax: h=ILBMHeight

ILBMHEIGHT returns the hieght of an initialized ILBM image, in pixels:

; *¥** TILBMHeight example
; *** Filename - ILBMHeight.bb2

; ¥** TFF filename
F$="FILENAME.IFF"

*** Tnitialize file
ILBMInfo F$

**¥* Qutput picture's height
NPrint ILBMHeight," pixels"

*** Wait for a mouse click
MouseWait

272

10.Screens

; ¥** Return to Blitz Basic 2 editor
End

ILBMDEPTH

Mode(s): Amiga
Function: return the depth of an ILBM image
Syntax: d=ILBMDepth

The ILBMDEPTH statement returns the depth of an ILBM image, in bitplanes:

; *** TLBMDepth example

; ¥** Filename - ILBMDepth.bb2
; ¥** TIFF filename
F$="FILENAME.IFF"

; ¥** TInitialize file

ILBMInfo F$

; *** Output picture's depth
NPrint ILBMDepth," bitplanes"”
; ¥** Wait for a mouse click
MouseWait

; ¥** Return to Blitz Basic 2 editor
End

ILBMVIEWMODE

Mode(s): Amiga/Blitz
Statement: return the viewmode of an ILBM file
Syntax: ILBMViewMode

ILBMViewMode returns the ViewMode, or resolution, of the file that was processed by ILBMInfo. This is
useful for opening a screen in the right mode before using LOADSCREEN. The different values of
ILBMVIEWMODE are as follows:

Table 10.4 : Values returned by ILBMVIEWMODE

32768 ($8000) Hi-res
2048 ($0800) HAM

128 ($0080) Half-Brite
4 ($0004) Interlaced
0 ($0000) Low-res

273

10.Screens

Here is an example:

*** TLBMViewMode example
*** Filename - ILBMViewMode.bb2

*** TFF filename
F$="FILENAME.IFF"

*** Tnitialize file
ILBMInfo F$
; ¥** Output picture's ViewMode
NPrint ILBMViewMode

*** Wait for a mouse click
MouselWait

*** Return to Blitz Basic 2 editor
End

Here is a full example which demonstrates the use of the Blitz Basic ILBM commands in the opening of
screens:

*** A thorough examination
*** Filename - ILBM.bb2

*** Analyse IFF file
F$="FILENAME.IFF"
ILBMInfo F$
*** Open screen to file specifications
Screen 0,0,0,ILBMWidth,ILBMHeight, ILBMDepth, ILBMViewMode,"",1,2
*** Load file
LoadScreen 0,F$,0
Use Palette ©
*** Wait for a mouse click
MouseWait
*** Return to Blitz Basic 2 editor
End

274

10.Screens

10.7 End-of-Chapter summary
A screen is an area of the display that shares the same attributes, such as size, resolution and colours.

Screen widths must be a multiple of 16 and they are always at least the full width of the viewable area
(@ minimum of 320 pixels).

The height of a screen will be 256 pixels on a PAL Amiga, or 200 pixels on an NTSC Amiga.

IFF stands for Interchangeable File Format. It has been adopted as the standard way of storing pictures
on the Amiga. Blitz Basic can load and save files in this format.

ILBM stands for InterLeaved BitMap. You can obtain information about ILBM files, including size,
number of colours and resolution.

Table 10.5 : Screen commands

Command Function

BEEPSCREEN Flash a screen

CLOSESCREEN Close a screen

FINDSCREEN Search for a screen

HIDESCREEN Move screen to back of display
ILBMDEPTH Return depth of IFF image
ILBMHEIGHT Return height of IFF image
ILBMINFO Initialize IFF file for examination
ILBMVIEWMODE Return ViewMode of IFF image
ILBMWIDTH Return width of IFF image
LOADSCREEN Load an IFF file

MOVESCREEN Move a screen

SAVESCREEN Save an IFF file

SCREEN Open a screen

SCREENPENS Set default screen pens
SHOWBITMAP Display BitMap in a screen
SHOWSCREEN Move screen to front of display
SMOUSEX Return x co-ordinate of mouse
SMOUSEY Return y co-ordinate of mouse
VIEWPORT Return screen's ViewPort
WBTOSCREEN Assign screen number to Workbench screen

275

Chapter 11 : Windows

A window is an independent rectangular area of text and graphics on the screen, which can accept or
display information. Windows can be enlarged, shrunk and moved, without altering the main screen. All
windows can have a title bar and may contain special gadgets in their borders. (Note that windows
must always appear in an Intuition screen).

When using windows the following procedure is recommended:
1. Open a screen using SCREEN or WBTOSCREEN
2. Open a window using WINDOW
3. Use WAITEVENT to detect any user activity in the window

4. Return to step 3

11.1 Opening a window

WINDOW

Mode(s): Amiga
Statement: open an intuition window
Syntax: Window WINDOW#,X,Y,W,H,F,TITLE$,D,B[,G_LIST#[,BITMAP#]]

WINDOW opens the Intuition window index WINDOW#. The X and Y parameters contain the jump
coordinates relative to the top left corner of the screen. The W and H parameters contain the width and
height of the window.

The F, or FLAGS, parameter specifies the special elements that a window may contain, such as sizing
gadgets, close gadgets and drag-bars:

Table 11.1: The FLAGS parameter

Window flag Value Description

WINDOWSIZING $0001 Attach sizing gadget to window
WINDOWDRAG $0002 Attach drag-bar to window
WINDOWDEPTH $0004 Attach depth gadget to window
WINDOWCLOSE $0008 Attach close gadget to window
SIZEBRIGHT $0010 Leave right hand window margin clear
SIZEBOTTOM $0020 Leave bottom window margin clear
BACKDROP $0100 Open window at back of display
GIMMEZEROZERO $0400 Keep border seperate from window area
BORDERLESS $0800 Open window with no border

ACTIVATE $1000 Activate the window once opened

276

11.Windows

To use more than one of these flags they must be logically combined using the "|" operator. For
example:

$0001 | $0002 | $0004

Which, when used as the FLAGS parameter, would attach a sizing gadget, drag-bar and depth gadget
to the window.

TITLES is a string which contains the title of the window, to be displayed at the very top of the window.
If you do not want a title for the window then use a null string for TITLE$ ("").

The D parameter specifies the colour of the detail pen of the window, as used in the window title. B is
the block pen of the window, as used in the window border.

The optional G_LIST# parameter is the number of a gadgetlist object to be attached to the window -
consult Chapter 13 for more information.

Here are some examples:

; **¥*% Window examples
; *** Filename - Window.bb2

WbToScreen ©

WBenchToFront_

Window 0,0,0,150,100,$0001,"Sizing gadget",1,0

Window 1,150,0,150,100,%0002, "Drag gadget",1,0

Window 2,300,0,150,100,$0004, "Depth gadget",1,0

Window 3,450,0,150,100,%0008,"Close gadget",1,0

Window 4,0,100,150,100,$0001 |$0008,"Sizing & Close",1,0
MouseWait

WBenchToBack_

End

11.1.1 Super-BitMap windows

Super-BitMap windows can also be created. These allow the window to have its own BitMap which can
be physically larger than the window. The BitMap can then be scrolled about the window. To attach a
BitMap to a window, set the SuperBitMap flag in the FLAGS parameter and include the number of the
BitMap to be attached in the BITMAP# parameter in your window definition.

GETSUPERBITMAP

Mode(s): Amiga
Statement: get super-BitMap
Syntax: GetSuperBitMap

277

11.Windows

PUTSUPERBITMAP

Mode(s): Amiga
Statement: put super-BitMap
Syntax: PutSuperBitMap

GETSUPERBITMAP is used to grab the contents of a super-BitMap. This allows you to update the
contents of the super-BitMap.

PUTSUPERBITMAP is used to put (i.e. refresh) the super-BitMap back into the current window.

In the following example, which demonstrates the above commands, try pressing the left mouse button
in the window to clear the super-BitMap:

; *¥** GetSuperBitMap/PutSuperBitMap example
; ¥** Filename - PutSuperBitMap.bb2

BitMap ©,320,256,3
*** Draw BitMap graphics
Boxf 0,0,319,255,4
For A=1 To 7
Circlef 160,100,160-A*5,100-A*5,A
Next A
Screen 0,11,"My Screen"
WIDTH=320
HEIGHT=256
PropGadget ©,3,-8,$18000+4+8+64,1,-20,8
PropGadget 0,-14,10,$11000+2+16+128,2,12,-20
AddIDCMP $10
SizeLimits 32,32,320+22,256+20
Window ©,0,20,200,150,$1489, "Window",1,2,0,0
Gosub DRAW

*** Main loop
Repeat
ev.l=WaitEvent
If ev=2 Then Gosub SIZE
If ev=$8 Then Gosub ALTER
If ev=$20 Then Gosub MOVIE
Until ev=%$200
End

; ¥** Draw sliders

SIZE:

SetHProp 0,1,X/WIDTH,InnerWidth/WIDTH
SetVProp 0,2,Y/HEIGHT,InnerHeight/HEIGHT
Redraw 0,1

Redraw 0,2

Goto DRAW

278

11.Windows

; ¥** Move SuperBitMap
MOVIE:

Repeat

Gosub DRAW

Until WaitEvent<>$10
Return

; *** Position SuperBitMap

DRAW :

W=WIDTH-InnerWidth
H=HEIGHT-InnerHeight

X=QLimit (HPropPot(0,1)*(W+1),0,W)
Y=QLimit (VPropPot(0,2)*(H+1),0,H)
PositionSuperBitMap X,Y

Return

*** Alter the contents of SuperBitMap
ALTER:
GetSuperBitMap
Cls
PutSuperBitMap
Return

POSITIONSUPERBITMAP

Mode(s): Amiga
Statement: position a super-BitMap
Syntax: PositionSuperBitMap X,Y

This statement is used to position the BitMap in the current super-BitMap window. The X and Y
parameters specify the new co-ordinates of the top left-hand corner of the BitMap. Here's an example:

; ¥** PositionSuperBitMap example
*** Filename - PositionSuperBitMap.bb2

BitMap ©,320,256,3
*** Draw BitMap graphics
Boxf 0,0,319,255,4
For A=1 To 7
Circlef 160,100,160-A*5,100-A*5,A
Next A
Screen 0,11,"My Screen"
WIDTH=320
HEIGHT=256
PropGadget ©,3,-8,$18000+4+8+64,1,-20,8
PropGadget 0,-14,10,$11000+2+16+128,2,12,-20
AddIDCMP $10
Sizelimits 32,32,320+22,256+20

279

11.Windows

Window ©0,0,20,200,150,%$1489, "Window",1,2,0,0
Gosub DRAW

;5 *** Main loop
Repeat
ev.l=WaitEvent
If ev=2 Then Gosub SIZE
If ev=$20 Then Gosub MOVIE
Until ev=%$200
End

; ¥** Draw sliders

SIZE:

SetHProp 0,1,X/WIDTH,InnerWidth/WIDTH
SetVProp 0,2,Y/HEIGHT,InnerHeight/HEIGHT
Redraw 0,1

Redraw 0,2

Goto DRAW

*** Move SuperBitMap
MOVIE:
Repeat
Gosub DRAW
Until WaitEvent<>$10
Return

; *** Position SuperBitMap

DRAW :

W=WIDTH-InnerWidth
H=HEIGHT-InnerHeight

X=QLimit (HPropPot(0,1)*(W+1),0,W)
Y=QLimit(VPropPot(0,2)*(H+1),0,H)
PositionSuperBitMap X,Y

Return

11.2 Manipulating windows

The following commands are used to manipulate windows after they have been created with the
WINDOW statement.

11.2.1 Moving between windows

USE WINDOW

Mode(s): Amiga
Statement: set current window
Syntax: Use Window WINDOW#

280

11.Windows

The USE WINDOW statement sets the specified window (WINDOW#) as the currently used window. USE
WINDOW automatically performs a WINDOWINPUT and WINDOWOUTPUT on the window. For
example:

; *** Use Window example
; *** Filename - Use Window.bb2

WbToScreen ©

WBenchToFront__

Window ©,0,10,300,100,%$0001,"",1,0
Window 1,300,10,300,100,%0001,"",1,0
Use Window ©

Print "Hello from window 0"

Use Window 1

Print "Hello from window 1"
MouseWait

WBenchToBack_

End

11.2.2 Closing a window

FREE WINDOW

Mode(s): Amiga
Statement: close a window
Syntax: Free Window WINDOW#

FREE WINDOW closes the specified window and removes it from the display. Here is an example:

;5 ¥** Free Window example
; *** Filename - Free Window.bb2

WbToScreen ©

WBenchToFront_

Window 0,0,10,300,100,%$0001,"Click mouse",1,0
MouseWait

Free Window ©

ViWait 50

End

281

11.Windows

CLOSEWINDOW

Mode(s): Amiga
Statement: close a window
Syntax: CloseWindow WINDOW#

CLOSEWINDOW works exactly the same as FREE WINDOW. Why? Who knows? Just for
the sake of it, here's the same example, but this time using CLOSEWINDOW:

*** CloselWindow example
; ¥** Filename - CloseWindow.bb2

WbToScreen ©

WBenchToFront_

Window 0,0,10,300,100,%0001,"Click mouse",1,0
MouseWait

CloselWindow ©

VWait 50

End

11.2.3 Activating a window

ACTIVATE

Mode(s): Amiga
Statement: activate a window
Syntax: Activate WINDOWi#

The ACTIVATE statement is used to activate a specified window (WINDOW#). For example:

*** Activate example ** Filename - Activate.bb2 **

Screen 0,2

Window ©,0,0,320,100,0, "Window 1",0,1
Window 1,0,100,320,100,0, "Window 2",0,1
VWait 100

Activate ©

Use Window ©

Print "Hello from Window 1"

VWait 100

Activate 1

Use Window 1

Print "Hello from Window 2"

MouseWait

End

282

11.Windows

11.2.4 Window titles

WTITLE

Mode(s): Amiga
Statement: update window and screen title
Syntax: WTitle "WINDOW TITLE","SCREEN TITLE"

The WTITLE statement is used to alter, or update, the current window and screen titles. For example:

; *¥*¥* WTitle example
*** Filename - WTitle.bb2

Screen 0,3,"Blitz"
Window 0,0,12,320,200,0, "Basic",1,2
Repeat
ev.l=WaitEvent
Until ev=$8
WTitle "Tops","Is"
ViWait 20
MouselWait
End

11.2.5 Altering window menus

MENUS

Mode(s): Amiga
Statement: turn ALL menus on or off
Syntax: Menus On/0ff

The MENUS statement may be used to turn ALL menus on or off in the currently used window. Here is
an example:

; *** Menus example
*** Fjlename - Menus.bb2

MenuTitle 0,0, "PROJECT"
Menultem 0,0,0,0,"Load"
Screen 9,3
Window ©,0,20,320,100,$%0001+$0008+$100f,"",1,2
SetMenu ©
*** Press left mouse to toggle menus on/off
T=1
Repeat

283

11.Windows

ev.l=WaitEvent
If Joyb(0)=1
If T=1
Menus Off
Else
Menus On
End If
T=1-T
EndIf
Until ev=%$200
End

11.2.6 Moving a window

WMOVE

Mode(s): Amiga
Statement: move the current window
Syntax: WMove X,Y

This statement physically moves the currently used window to the coordinates specified by the X and Y
parameters. For example:

; ¥** WMove examples
; ¥** Filename - WMove.bb2

Screen 0,2

Window 0,0,0,150,100,0, "Moving window",0,1
ViWait 100

WMove 100,0

ViWait 50

WMove 100,100

MouseWait

End

11.2.7 Window scrolling

WSCROLL

Mode(s): Amiga
Statement: scroll a rectangular area of the current window
Syntax: WScroll X1,Y1,X2,Y2,DELTA X,DELTA_Y

The WSCROLL statement is used to scroll a portion of the current window. X1 and Y1 are the
coordinates of the top left-hand corner or the area to scroll and X2 and Y2 are the bottom right-hand

284

11.Windows

coordintes. The DELTA_X and DELTA_Y parameters specify the amount the area is to be moved, in the
following directions:

Table 11.2 : Delta values

Delta values DELTA X DELTA_Y

Positive Left Up
Negative Right Down

Here's an example:

*¥** WScroll example
;5 *** Filename - WScroll.bb2

Screen 0,3
Window ©0,0,20,320,200,0, "Scrolled",0,1
For A=1 To 50
WCircle Rnd(260)+30,Rnd(100)+40,Rnd(20)+5,Rnd(8)
Next A
VWait 50
WScroll 4,13,310,180,0,-20
ViWait 50
WScroll 4,13,310,180,0,20
MouselWait
End

11.2.8 Window sizing

WSIZE

Mode(s): Amiga
Statement: alter the width and height of the current window
Syntax: WSize WIDTH,HEIGHT

WSIZE is used to change the size of the currently used window. WIDTH and HEIGHT are measured in
pixels:

*** WSize example
; ¥** Filename - WSize.bb2

Screen 0,2

Window 0,0,0,150,100,0, "Growing window",0,1
ViWait 100

WSize 320,200

285

11.Windows

MouseWait
End

SIZELIMITS

Mode(s): Amiga
Statement: set the limits that windows can be sized with sizing gadget
Syntax: SizelLimits MIN WIDTH,MIN HEIGHT,MAX WIDTH,MAX HEIGHT

SIZELIMITS is used to set the limits that any new windows can be sized to using the sizing gadget. The
MIN_WIDTH and MIN_HEIGHT parameters define the minimum size of the window, and MAX_WIDTH
and MAX_HEIGHT the maximum size, in pixels. Try the following example:

; ¥** Size restrictions
; *** Filename - Sizelimits.bb2

Screen 0,2
SizelLimits 100,100,320,100
Window ©,0,00,320,100,$0001+$0008, "Change my size",0,1
Repeat
ev.l=WaitEvent
Until ev=$200
End

11.2.9 Window BitMaps

BITMAPTOWINDOW

Mode(s): Amiga
Statement: copy a BitMap to a window
Syntax: BitmapToWindow BITMAP#,WINDOW#[,X1,Y1,X2,Y2,W,H]

This statement is used to copy a BitMap (BITMAP#) to a window (WINDOW?#). The optional parameters
are as follows:

Table 11.3 : BITMAPTOWINDOW parameters

Parameter Description

X1 X co-ordinate of BitMap
Y1 Y co-ordinate of BitMap
X2 X co-ordinate of window
Y2 Y co-ordinate of window

286

11.Windows

W Width of BitMap to copy (in pixels)
H Height of BitMap to copy (in pixels)
For example:

; *** BitMaptoWindow example
; *** Filename - BitMaptoWindow.bb2

Screen 0,3
ScreensBitMap 0,0
Cls
For A=1 To 100
Circlef Rnd(320),Rnd(80),Rnd(20)+10,Rnd(5)+1
Next A
Window 0,0,110,320,100,0,"Click mouse button",1,2
BitMaptoWindow ©,0,20,20,10,15,300, 80
Repeat
ev.l=WaitEvent
Until ev=$8
End

11.3 Window functions

The following functions return information about previously initalised windows.

11.3.1 Window dimensions

WINDOWX

Mode(s): Amiga
Function: return horizontal location of the top left corner of the window
Syntax: x=WindowX

This function returns the horizontal location, in pixels, of the top left-hand corner of the currently used
window, relative to the screen that the window appears in.

To return the vertical location of the window, use the corresponding WINDOWY function.

WINDOWY

Mode(s): Amiga
Function: return the vertical location of the top left corner of the window
Syntax: y=WindowY

287

11.Windows

For example:

;5 ¥** WindowX/Y example
; ¥** Filename - WindowY.bb2

Screen 0,2
Window ©,Rnd(200)+10,Rnd(100)+10,150,100,0,"",0,1
WLocate 0,0

NPrint "Window X = ",WindowX
NPrint "Window Y = ",WindowY
MouseWait

End

WINDOWWIDTH

Mode(s): Amiga
Function: return the width of the current window
Syntax: w=WindowWidth

WINDOWWIDTH returns the width of the currently used window.

WINDOWHEIGHT

Mode(s): Amiga
Function: return the height of the current window
Syntax: h=WindowHeight

WINDOWHEIGHT returns the height of the currently used window:

; ¥** Window dimensions
; ¥** Filename - WindowHeight.bb2

Screen 0,2

Window ©,0,20,Rnd(150)+170,Rnd(100)+10,0,"",0,1
WLocate 0,0

NPrint "Window width = ",WindowWidth

NPrint "Window height = ",WindowHeight
MouseWait

End

288

11.Windows

INNERWIDTH

Mode(s): Amiga
Function: return the width inside the border of the current window
Syntax: w=InnerWidth

The INNERWIDTH function returns the width, in pixels, of the area inside the border of the currently
used window.

INNERHEIGHT

Mode(s): Amiga
Function: return the height inside the border of the current window
Syntax: h=InnerHeight

INNERHEIGHT returns the height, in pixels, of the area inside the border of the currently used window.
For example:

; *** Window dimensions 2
; *** Filename - InnerHeight.bb2

Screen 0,2

Window ©,0,20,Rnd(150)+170,Rnd(100)+10,0,"",0,1
WLocate 0,0

NPrint "Inner width = ",InnerWidth

NPrint "Inner height = ",InnerHeight

MouseWait

End

WTOPOFF

Mode(s): Amiga
Function: return distance between top of window border and its inside
Syntax: t=WTopOff

This function returns the distance between the top of the current window border and the inside of the
window, in pixels.

289

11.Windows

WLEFTOFF

Mode(s): Amiga
Function: return distance between left edge of window border and its inside
Syntax: l=WLeftOff

The WLEFTOFF function returns the distance between the left edge of the current window border and
the inside of the window, in pixels:

; ¥** Window dimensions 3
; ¥** Filename - WLeftOff.bb2

Screen 0,2

Window ©,0,20,320,100,0, "Window",0,1
WLocate 0,0

NPrint "WTopOff = ",WTopOff

NPrint "WLeftOff = ",WLeftOff
MouseWait

End

11.3.2 Window RastPort

RASTPORT

Mode(s): Amiga
Function: return the specified Window's RastPort address
Syntax: r=RastPort (WINDOW#)

This function returns the RastPort address of the specified window:

; *** RastPort example
; *** Filename - RastPort.bb2

Screen 0,2

Window 0,0,00,320,100,$0001+$0008,"",0,1
NPrint "RastPort = ",RastPort(@)
MouseWait

End

290

11.Windows

11.4 Window events

11.4.1 IDCMP flags

IDCMP flags are special flags which are attached to windows. They describe the type of "event" which
can be reported by a window. Events occur when a window has its size changed with the sizing gadgets,
or when a mouse button is pressed, or when a disk is removed etc. (see below for full list). Events are
reported by the WAITEVENT and EVENT functions.

Table 11.4 : IDCMP flags

IDCMP flag Event

$2 Reported when window has its size changed

$4 Reported when window contents corrupted

$8 Reported when mouse button is pressed

$10 Reported when mouse has been moved

$20 Reported when window gadget has been pushed down
$40 Reported when window gadget has been released
$100 Reported when menu operation in window has occured
$200 Reported when close gadget has been selected
$400 Reported upon keypress

$8000 Reported when disk is inserted

$10000 Reported when disk is removed

$40000 Reported when window has been activated

$80000 Reported when window has been de-activated

11.4.2 Defining IDCMP flags

By default, all windows are opened with an IDCMP flags setting of:
$02|$4|$8|$20|$40|$100|$200| $400 | $40000 | $80000

However, this may be changed by the DEFAULTIDCMP statement.

DEFAULTIDCMP

Mode(s): Amiga
Statement: set window IDCMP flags
Syntax: DefaultIDCMP IDCMP_FLAGS

This statement is used to define the window IDCMP flags. Each window can have its own set of IDCMP
flags, although they must be defined before the window is opened.

If you require more than one IDCMP flag then you can use the (|) operator to add them together. Here
are some examples:

291

11.Windows

; *** DefaultIDCMP example
; *¥** Filename - DefaultIDCMP.bb2

Screen 0,3

; *** This example closes a window using

; *** the mouse button, not a close gagdet
DefaultIDCMP $8

Window ©,0,20,320,100,0, "Press mouse button",0,1
ev.l=WaitEvent

If ev=$8 Then Free Window ©

ViWait 100

End

; *** DefaultIDCMP example 2
; *¥** Filename - DefaultIDCMP2.bb2

Screen 0,3
; ¥** This example flashes the screen
*** ypon a key-press
DefaultIDCMP $8]|$400
Window ©,0,20,320,100,$1000, "Press a key",0,1
Repeat
ev.l=WaitEvent
If ev=$400 Then BeepScreen 0
Until ev=$